全微分的定义
如果函数z=f(x,y)z=f(x, y)z=f(x,y)在(x,y)(x, y)(x,y)处的全增量
Δz=f(x+Δx,y+Δy)−f(x,y)\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)Δz=f(x+Δx,y+Δy)−f(x,y)
可以表示为
Δz=AΔx+BΔy+o(ρ)\Delta z=A\Delta x+B\Delta y+o(ρ)Δz=AΔx+BΔy+o(ρ)
其中A、B不依赖于ΔxΔxΔx,ΔyΔyΔy,仅与xxx,yyy有关,ρρρ趋近于0(ρ=(Δx)2+(Δy)2ρ=\sqrt{(\Delta x)^2+(\Delta y)^2}ρ=(Δx)2+(Δy)2),此时称函数z=f(x,y)z=f(x, y)z=f(x,y)在点(x,y)(x,y)(x,y)处可微分,AΔx+BΔyAΔx+BΔyAΔx+BΔy称为函数z=f(x,y)z=f(x, y)z=f(x,y)在点(x,y)(x, y)(x,y)处的全微分,记为dzdzdz即
dz=AΔx+BΔydz=A\Delta x +B\Delta ydz=AΔx+BΔy
该表达式称为函数z=f(x,y)z=f(x, y)z=f(x,y)在(x,y)(x, y)(x,y)处(关于ΔxΔxΔx, ΔyΔyΔy)的全微分。
定理
定理1
若函数z=f(x,y)z=f(x,y)z=f(x,y)在点p0(x0,y0)p_0(x_0,y_0)p0(x0,y0)处可微,则z=f(x,y)z=f(x,y)z=f(x,y)在p0(x0,y0)p_0(x_0,y_0)p0(x0,y0)处连续,且各个偏导数存在,并且有fx′(x0,y0)=Af'_x(x_0,y_0)=Afx′(x0,y0)=A,fy′(x0,y0)=Bf'_y(x_0,y_0)=Bfy′(x0,y0)=B。即
Δz=f(x+Δx,y+Δy)−f(x,y)=fx′(x0,y0)Δx+fy′(x0,y0)Δy+o(ρ)\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)=f'_x(x_0,y_0)\Delta x+f'_y(x_0,y_0)\Delta y+o(ρ)Δz=f(x+Δx,y+Δy)−f(x,y)=fx′(x0,y0)Δx+fy′(x0,y0)Δy+o(ρ)
其中ρ=(Δx)2+(Δy)2ρ=\sqrt{(\Delta x)^2+(\Delta y)^2}ρ=(Δx)2+(Δy)2
或写作
Δz=f(x0+x,y0+y)−f(x0,y0)=fx′(x0,y0)x+fy′(x0,y0)y+o(ρ)\Delta z=f(x_0+x,y_0+y)-f(x_0,y_0)=f'_x(x_0,y_0)x+f'_y(x_0,y_0)y+o(ρ)Δz=f(x0+x,y0+y)−f(x0,y0)=fx′(x0,y0)x+fy′(x0,y0)y+o(ρ)
其中ρ=x2+y2ρ=\sqrt{x^2+y^2}ρ=x2+y2
定理2
若函数z=f(x,y)z=f(x,y)z=f(x,y)在点p0(x0,y0)p_0(x_0,y_0)p0(x0,y0)处的偏导数fx′(x0,y0)f'_x(x_0,y_0)fx′(x0,y0),fy′(x0,y0)f'_y(x_0,y_0)fy′(x0,y0)连续,则函数f(x,y)f(x,y)f(x,y)在点p0p_0p0处可微。
定理3
若函数z=f(x,y)z=f(x,y)z=f(x,y)在点(x,y)(x, y)(x,y)可微分,则该函数在点(x,y)(x,y)(x,y)的偏导数∂z∂x\frac{\partial z}{\partial x}∂x∂z,∂z∂y\frac{\partial z}{\partial y}∂y∂z必存在,且函数z=f(x,y)z=f(x,y)z=f(x,y)在点(x,y)(x, y)(x,y)的全微分为:
dz=∂z∂xΔx+∂z∂yΔydz=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta ydz=∂x∂zΔx+∂y∂zΔy
可微的充分条件
limΔx→0,Δy→0Δz−fx′(x,y)Δx−fy′(x,y)Δyρ=0\displaystyle \lim_{\Delta x \to 0,\Delta y \to 0}{\frac{\Delta z-f'_x(x,y)\Delta x-f'_y(x,y)\Delta y}{ρ}}=0Δx→0,Δy→0limρΔz−fx′(x,y)Δx−fy′(x,y)Δy=0
或写作
limΔx→0,Δy→0f(x+Δx,y+Δy)−f(x,y)−fx′(x,y)−fy′(x,y)(Δx)2+(Δy)2=0\displaystyle \lim_{\Delta x \to 0,\Delta y \to 0}{\frac{f(x+\Delta x,y+\Delta y)-f(x,y)-f'_x(x,y)-f'_y(x,y)}{\sqrt{(\Delta x)^2+(\Delta y)^2}}}=0Δx→0,Δy→0lim(Δx)2+(Δy)2f(x+Δx,y+Δy)−f(x,y)−fx′(x,y)−fy′(x,y)=0
或写作
limx→x0,y→y0f(x,y)−f(x0,y0)−fx′(x0,y0)(x−x0)−fy′(x0,y0)(y−y0)(x−x0)2+(y−y0)2=0\displaystyle \lim_{x \to x_0,y \to y_0}{\frac{f(x,y)-f(x_0,y_0)-f'_x(x_0,y_0)(x-x_0)-f'_y(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}}=0x→x0,y→y0lim(x−x0)2+(y−y0)2f(x,y)−f(x0,y0)−fx′(x0,y0)(x−x0)−fy′(x0,y0)(y−y0)=0
例题
设函数z=f(x,y)z= f(x , y)z=f(x,y)在点(0,1)(0,1)(0,1)的某邻域内可微,且在该邻域内有f(x,y+1)=1+2x+3y+o(ρ)f(x , y+1)=1+ 2x + 3y +o(ρ)f(x,y+1)=1+2x+3y+o(ρ),其中ρ=x2+y2ρ=\sqrt{x^2+y^2}ρ=x2+y2,则limn→∞[f(0,e1n)]n\displaystyle \lim_{n \to \infty}[f(0,e^{\frac{1}{n}})]^nn→∞lim[f(0,en1)]n=____。
解答:e3e^3e3。由题设,由f(x,y)f(x,y)f(x,y)在点(0,1)(0,1)(0,1)处连续,知f(0,1)=limx→0,y→0f(x,y+1)=1f(0,1)=\displaystyle \lim_{x \to 0,y \to 0}{f(x,y+1)}=1f(0,1)=x→0,y→0limf(x,y+1)=1,故
f(0+x,1+y)−f(0,1)=2x+3y+o(ρ)f(0+x,1+y)-f(0,1)=2x+3y+o(ρ)f(0+x,1+y)−f(0,1)=2x+3y+o(ρ)
由全微分的定义(定理1),得fy′(0,1)=3f'_y(0,1)=3fy′(0,1)=3,故
limn→∞[f(0,e1n)]n=elimn→∞nln[f(0,e1n)−1+1]\displaystyle \lim_{n \to \infty}[f(0,e^{\frac{1}{n}})]^n=e^{\displaystyle \lim_{n \to \infty}n\ln [f(0,e^{\frac{1}{n}})-1+1]}n→∞lim[f(0,en1)]n=en→∞limnln[f(0,en1)−1+1]
而
limn→∞nln[f(0,e1n)−1+1]=limn→∞f(0,e1n)−f(0,1)e1n−1⋅e1n−11n=fy′(0,1)=3\displaystyle \lim_{n \to \infty}n\ln [f(0,e^{\frac{1}{n}})-1+1]=\displaystyle \lim_{n \to \infty}{\frac{f(0,e^{\frac{1}{n}})-f(0,1)}{e^{\frac{1}{n}}-1}}·\frac{e^{\frac{1}{n}-1}}{\frac{1}{n}}=f'_y(0,1)=3n→∞limnln[f(0,en1)−1+1]=n→∞limen1−1f(0,en1)−f(0,1)⋅n1en1−1=fy′(0,1)=3
故原式=e3=e^3=e3