已知 f ( x ) f(x) f(x),求 g ( x ) = exp ( f ( x ) ) ( m o d x n ) g(x) = \exp(f(x)) \pmod{x^n} g(x)=exp(f(x))(modxn)
ln g ( x ) − f ( x ) = 0 \ln g(x) - f(x) = 0 lng(x)−f(x)=0
直接牛顿迭代
g 1 ( x ) = g 0 ( x ) − ln g 0 ( x ) − f ( x ) 1 g 0 ( x ) g_1(x) = g_0(x) - \frac{\ln g_0(x) - f(x)}{\frac 1{g_0(x)}} g1(x)=g0(x)−g0(x)1lng0(x)−f(x)
= g 0 ( x ) ( 1 − ln g 0 ( x ) + f ( x ) ) =g_0(x)(1-\ln g_0(x)+f(x)) =g0(x)(1−lng0(x)+f(x))
A C C o d e \mathrm {AC\ Code} AC Code
1.9 K 1.9K 1.9K超短代码。
#include<bits/stdc++.h>
#define maxn 3000005
#define rep(i,j,k) for(int i=(j);i<=(k);i++)
#define per(i,j,k) for(int i=(j);i>=(k);i--)
#define mod 998244353
using namespace std;
int Wl,W[maxn],lg[maxn],r[maxn],inv[maxn];
int Pow(int b,int k){
int r=1;for(;k;k>>=1,b=1ll*b*b%mod) if(k&1) r=1ll*r*b%mod;return r; }
void init(int n){
for(W[0]=inv[0]=inv[1]=Wl=1;n>=2*Wl;Wl<<=1);int pw=Pow(3,(mod-1)/Wl/2);
rep(i,1,Wl<<1