先从牛顿迭代讲起。
已知多项式函数G(z)G(z)G(z),求多项式函数F(x)F(x)F(x)满足
G(F(x))≡0(modxn)G(F(x))\equiv0 \pmod{x^n}G(F(x))≡0(modxn)
考虑用迭代求解,假设我们已经求得F0(x)F_0(x)F0(x)满足
G(F0(x))≡0(modx⌈n2⌉)G(F_0(x))\equiv0\pmod{x^{\left\lceil\frac{n}{2}\right\rceil}}G(F0(x))≡0(modx⌈2n⌉)
将函数GGG在z=F0(x)z=F_0(x)z=F0(x)处进行泰勒展开
G(F(x))=∑i=1∞G(i)(F0(x))i!(F(x)−F0(x))iG(F(x))=\sum_{i=1}^{\infty}\frac{G^{(i)}(F_0(x))}{i!}(F(x)-F_0(x))^iG(F(x))=i=1∑∞i!G(i)(F0(x))(F(x)−F0(x))i
其中G(i)G^{(i)}G(i)为GGG的iii阶导函数.
取前两项
G(F(x))≡G(F0(x))+G′(F0(x))(F(x)−F0(x))(modxn)G(F(x))\equiv G(F_0(x))+G'(F_0(x))(F(x)-F_0(x))\pmod{x^n}G(F(x))≡G(F0(x))+G