RANSAC 伪代码

RANSAC(RANdom SAmple Consensus)算法是一种用于从观测数据中估计数学模型参数的方法,尤其适用于存在噪声和异常值的情况。算法核心是通过迭代选取随机子集来判断潜在的内点(即符合模型的数据点),并计算最优模型。当找到足够数量的内点以确定一个良好的模型时,算法结束。以下是RANSAC的伪代码描述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#RANSAC 伪代码

Given:
data – a set of observations
model – a model to explain observed data points
n – minimum number of data points required to estimate model parameters
k – maximum number of iterations allowed in the algorithm
t – threshold value to determine data points that are fit well by model
d – number of close data points required to assert that a model fits well to data

Return:
bestFit – model parameters which best fit the data (or nul if no good model is found)

iterations = 0
bestFit = nul
bestErr = something really large
while iterations < k {
maybeInliers = n randomly selected values from data
maybeModel = model parameters fitted to maybeInliers
alsoInliers = empty set
for every point in data not in maybeInliers {
if point fits maybeModel with an error smaller than t
add point to alsoInliers
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值