YOLOv11v10v8使用教程: YOLOv11入门到入土使用教程
YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总
《SEM-Net: Efficient Pixel Modelling for image inpainting with Spatially Enhanced SSM》
一、 模块介绍
论文链接:https://arxiv.org/pdf/2411.06318
代码链接:https://github.com/ChrisChen1023/SEM-Net
论文速览:
图像修复旨在根据图像中已知区域的信息修复部分受损的图像。实现语义上合理的修复结果尤其具有挑战性,因为这要求修复区域展现出与语义一致区域相似的模式。这需要一个具有强大能力来捕捉长程依赖关系的模型。现有的模型在这方面存在困难,因为基于卷积神经网络(CNN)的方法感受野增长缓慢,而基于Transformer的方法仅在补丁级别进行交互,这些都不利于捕捉长程依赖关系。受此启发,我们提出了SEM-Net,这是一种新颖的视觉状态空间模型(SSM)视觉网络,在像素级别对受损图像进行建模,同时在状态空间中捕捉长程依赖关系(LRDs),实现了线性计算复杂度。为了解决SSM固有的空间感知不足问题,我们引入了蛇曼巴块(SMB)和空间增强前馈网络。这些创新使SEM-Net在两个不同的数据集上超越了最先进的修复方法,显示出在捕捉长程依赖关系方面的显著改进。
总结:本文更新其中的FeedForward结构。
⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐
二、二创融合模块
2.1 相关代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast
from mamba_ssm import Mamba
import math
from pdb import set_trace as stx
import numbers
from einops import rearrange
class BaseNetwork(nn.Module):
def __init__(self):
super(BaseNetwork, self).__init__()
def init_weights(self, init_type='normal', gain=0.02):
'''
initialize network's weights
init_type: normal | xavier | kaiming | orthogonal
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39
'''
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
nn.init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
nn.init.orthogonal_(m.weight.data, gain=gain)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
nn.init.normal_(m.weight.data, 1.0, gain)
nn.init.constant_(m.bias.data, 0.0)
self.apply(init_func)
def spectral_norm(module, mode=True):
if mode:
return nn.utils.spectral_norm(module)
return module
class Discriminator(BaseNetwork):
def __init__(self, in_channels, use_sigmoid=True, use_spectral_norm=True, init_weights=True):
super(Discriminator, self).__init__()
self.use_sigmoid = use_sigmoid
self.conv1 = self.features = nn.Sequential(
spectral_norm(nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm),
nn.LeakyReLU(0.2, inplace=True),
)
self.conv2 = nn.Sequential(
spectral_norm(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm),
nn.LeakyReLU(0.2, inplace=True),
)
self.conv3 = nn.Sequential(
spectral_norm(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1, bias=not use_spectral_norm), use_spectral_norm),
nn.LeakyReLU(0.2, inplace=True),
)
self.conv4 = nn.Sequential(
spectral_norm(nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=1, padding=1, bias=not use_spectral_norm), use_spectral_norm),
nn.LeakyReLU(0.2, inplace=True),
)
self.conv5 = nn.Sequential(
spectral_norm(nn.Conv2d(in_channels=512, out_channels=1, kernel_size=4, stride=1, padding=1, bias=not use_spectral_norm), use_spectral_norm),
)
if init_weights:
self.init_weights()
def forward(self, x):
conv1 = self.conv1(x)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
conv4 = self.conv4(conv3)
conv5 = self.conv5(conv4)
outputs = conv5
if self.use_sigmoid:
outputs = torch.sigmoid(conv5)
return outputs, [conv1, conv2, conv3, conv4, conv5]
############# Restormer-inpainting
def to_3d(x):
return rearrange(x, 'b c h w -> b (h w) c')
def to_4d(x, h, w):
return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
class BiasFree_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(BiasFree_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
sigma = x.var(-1, keepdim=True, unbiased=False)
return x / torch.sqrt(sigma + 1e-5) * self.weight
class WithBias_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(WithBias_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
mu = x.mean(-1, keepdim=True)
sigma = x.var(-1, keepdim=True, unbiased=False)
return (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight + self.bias
class LayerNorm(nn.Module):
def __init__(self, dim, LayerNorm_type):
super(LayerNorm, self).__init__()
if LayerNorm_type == 'BiasFree':
self.body = BiasFree_LayerNorm(dim)
else:
self.body = WithBias_LayerNorm(dim)
def forward(self, x):
h, w = x.shape[-2:]
return to_4d(self.body(to_3d(x)), h, w)
##########################################################################
## Spatially Enhanced Feed-Forward Network (SEFN)
class FeedForward(nn.Module):
def __init__(self, dim, ffn_expansion_factor, bias):
super(FeedForward, self).__init__()
hidden_features = int(dim * ffn_expansion_factor)
self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)
self.fusion = nn.Conv2d(hidden_features + dim, hidden_features, kernel_size=1, bias=bias)
self.dwconv_afterfusion = nn.Conv2d(hidden_features, hidden_features, kernel_size=3, stride=1, padding=1,
groups=hidden_features, bias=bias)
self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,
groups=hidden_features * 2, bias=bias)
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.conv = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=3,stride=1,padding=1,bias=True),
LayerNorm(dim, 'WithBias'),
nn.ReLU(inplace=True),
nn.Conv2d(dim, dim, kernel_size=3,stride=1,padding=1,bias=True),
LayerNorm(dim, 'WithBias'),
nn.ReLU(inplace=True)
)
self.upsample = nn.Upsample(scale_factor=2)
def forward(self, x, spatial):
x = self.project_in(x)
#### Spatial branch
y = self.avg_pool(spatial)
y = self.conv(y)
y = self.upsample(y)
####
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x1 = self.fusion(torch.cat((x1, y),dim=1))
x1 = self.dwconv_afterfusion(x1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
2.2更改yaml文件 (以自研模型为例)
打开更改ultralytics/cfg/models/11路径下的YOLOv11.yaml文件,替换原有模块。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# ⭐⭐Powered by https://blog.youkuaiyun.com/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 377 layers, 2,249,525 parameters, 2,249,509 gradients, 8.7 GFLOPs/258 layers, 2,219,405 parameters, 0 gradients, 8.5 GFLOPs
s: [0.50, 0.50, 1024] # summary: 377 layers, 8,082,389 parameters, 8,082,373 gradients, 29.8 GFLOPs/258 layers, 7,972,885 parameters, 0 gradients, 29.2 GFLOPs
m: [0.50, 1.00, 512] # summary: 377 layers, 20,370,221 parameters, 20,370,205 gradients, 103.0 GFLOPs/258 layers, 20,153,773 parameters, 0 gradients, 101.2 GFLOPs
l: [1.00, 1.00, 512] # summary: 521 layers, 23,648,717 parameters, 23,648,701 gradients, 124.5 GFLOPs/330 layers, 23,226,989 parameters, 0 gradients, 121.2 GFLOPs
x: [1.00, 1.50, 512] # summary: 521 layers, 53,125,237 parameters, 53,125,221 gradients, 278.9 GFLOPs/330 layers, 52,191,589 parameters, 0 gradients, 272.1 GFLOPs
# n: [0.33, 0.25, 1024]
# s: [0.50, 0.50, 1024]
# m: [0.67, 0.75, 768]
# l: [1.00, 1.00, 512]
# x: [1.00, 1.25, 512]
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, RCRep2A, [128, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 4, RCRep2A, [256, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 4, RCRep2A, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, RCRep2A, [1024, True]]
- [-1, 1, SPPF_WD, [1024, 7]] # 9
# YOLO11n head
head:
- [[3, 5, 7], 1, align_3In, [32, 1]] # 10
- [[4, 6, 9], 1, align_3In, [32, 1]] # 11
- [[-1, -2], 1, FeedForward_SEF, [1]] #12 cat
- [-1, 1, RepVGGBlocks, []] #13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]] #14
- [[-1, 4], 1, Concat, [1]] #15 cat
- [-1, 1, Conv, [256, 3]] # 16
- [13, 1, Conv, [512, 3]] #17
- [13, 1, Conv, [1024, 3, 2]] #18
- [[16, 17, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.youkuaiyun.com/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
2.3 修改train.py文件
创建Train脚本用于训练。
from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
if __name__ == '__main__':
model = YOLO(model='ultralytics/cfg/models/xy_YOLO/xy_yolov1.yaml')
# model = YOLO(model='ultralytics/cfg/models/11/yolo11l.yaml')
model.train(data='./datasets/data.yaml', epochs=1, batch=1, device='0', imgsz=320, workers=1, cache=False,
amp=True, mosaic=False, project='run/train', name='exp',)
在train.py脚本中填入修改好的yaml路径,运行即可训练,数据集创建教程见下方链接。