Problem Description
Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as
base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
题意:给出两个数p,a 如果p是素数输出no 否则判断a的p次方对p取模之后是不是等于a
#include<cstdio>
__int64 quickpow(__int64 a,__int64 p)
{
__int64 ans=1,base=a,mod=p;
while(p)
{
if(p&1)
ans=((ans%mod)*(base%mod))%mod;
base=((base%mod)*(base%mod))%mod;
p>>=1;
}
return ans;
}
__int64 prime(__int64 p)
{
__int64 i;
if(p==2)
return 1;
for(i = 2; i*i<=p; i++)
if(p%i == 0)
return 0;
return 1;
}
int main()
{
__int64 a,p,i;
__int64 sum;
while(scanf("%I64d %I64d",&p,&a)&&a||p)
{
sum=0;
sum=quickpow(a,p);
if(prime(p))
printf("no\n");
else
{
if(sum==a)
printf("yes\n");
else printf("no\n");
}
}
return 0;
}