Pseudoprime numbers

本文介绍了一个程序,该程序基于费马小定理来判断给定的整数对是否构成一个特定类型的伪素数——即对于一些整数a,p是否为a的基伪素数。此外,还提供了判断一个数是否为素数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
 

Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
 

Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
 

Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
 

Sample Output
no no yes no yes yes
 
题意:给出两个数p,a 如果p是素数输出no 否则判断a的p次方对p取模之后是不是等于a

#include<cstdio>
__int64 quickpow(__int64 a,__int64 p)
{
	__int64 ans=1,base=a,mod=p;	
	while(p)
	{
		if(p&1)
		  ans=((ans%mod)*(base%mod))%mod;
		base=((base%mod)*(base%mod))%mod;
		p>>=1;				
	}
	return ans;
}
__int64 prime(__int64 p)
{
	__int64 i; 
	if(p==2)
	  return 1;
	for(i = 2; i*i<=p; i++)  
        if(p%i == 0)  
            return 0;
	  return 1;	  
}
int main()
{
	__int64 a,p,i;
	__int64 sum;
	while(scanf("%I64d %I64d",&p,&a)&&a||p)
	{
		sum=0;
		sum=quickpow(a,p);	
		if(prime(p))
		  	printf("no\n");	
		else
		{
	       if(sum==a)
	         printf("yes\n");
	       else printf("no\n");
	    }
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值