LLaMA-Factory web微调大模型并导出大模型

LLaMA-Factory
开源大模型如LLaMA,Qwen,Baichuan等主要都是使用通用数据进行训练而来,其对于不同下游的使用场景和垂直领域的效果有待进一步提升,衍生出了微调训练相关的需求,包含预训练(pt),指令微调(sft),基于人工反馈的对齐(rlhf)等全链路。但大模型训练对于显存和算力的要求较高,同时也需要下游开发者对大模型本身的技术有一定了解,具有一定的门槛。

LLaMA-Factory项目的目标是整合主流的各种高效训练微调技术,适配市场主流开源模型,形成一个功能丰富,适配性好的训练框架。项目提供了多个高层次抽象的调用接口,包含多阶段训练,推理测试,benchmark评测,API Server等,使开发者开箱即用。同时借鉴 Stable Diffsion WebUI相关,本项目提供了基于gradio的网页版工作台,方便初学者可以迅速上手操作,开发出自己的第一个模型。
LLaMA-Factory安装

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值