s参数相关知识

1. S matrix推导:

1.1 电流电压及反射系数推导:

在这里插入图片描述
在这里插入图片描述
其中a代表入射波,b代表反射波, a = 1 2 ( u + i ) a=\frac{1}{2}(u+i) a=21(u+i) b = 1 2 ( u − i ) b=\frac{1}{2}(u-i) b=21(ui)推导过程如下:
例子:无穷短导线
在这里插入图片描述
等效电路图:
在这里插入图片描述
U ( z + d z ) + d U = U ( z ) U ( z + d z ) − U ( z ) = − d U ∂ U ∂ z d z = − d U (1) U(z+dz)+dU=U(z) \tag{1}\\ \\ U(z+dz) - U(z) = -dU \\ \frac{\partial U}{\partial z}dz = -dU U(z+dz)+dU=U(z)U(z+dz)U(z)=dUzUdz=dU(1)
d U = R ′ ⋅ d z ⋅ I + L ′ ⋅ d z ⋅ ∂ I ∂ t − ∂ U ∂ z = R ′ ⋅ I + L ′ ∂ I ∂ t (2) dU = R^{'}\cdot dz\cdot I+L^{'}\cdot dz \cdot \frac{\partial I}{\partial t} \tag{2} \\ -\frac{\partial U}{\partial z} = R^{'}\cdot I+L^{'}\frac{\partial I}{\partial t} dU=RdzI+LdztIzU=RI+LtI(2)

I ( z ) = I ( z + d z ) + d I I ( z + d z ) − I ( z ) = − d I ∂ I ∂ Z d z = − d I (3) I(z)=I(z+dz)+dI \tag{3}\\ I(z+dz) - I(z) = -dI\\ \frac{\partial I}{\partial Z}dz = -dI I(z)=I(z+dz)+dII(z+dz)I(z)=dIZIdz=dI(3)

d I = G ′ ⋅ d z ( U − d U ) + C ′ ⋅ d z ⋅ ∂ ( U − d U ) ∂ t d I ≈ G ′ ⋅ d z ⋅ U + C ′ ⋅ d z ⋅ ∂ U ∂ t − ∂ I ∂ z = G ′ ⋅ U + C ′ ∂ U ∂ t (4) dI =G^{'}\cdot dz(U-dU) +C^{'}\cdot dz \cdot \frac{\partial (U-dU)}{\partial t}\\ dI \approx G^{'}\cdot dz \cdot U + C^{'}\cdot dz \cdot \frac{\partial U}{\partial t}\\ -\frac{\partial I}{\partial z} = G^{'}\cdot U+C^{'}\frac{\partial U}{\partial t}\tag{4} dI=Gdz(UdU)+Cdzt(UdU)dIGdzU+CdztUzI=GU+CtU(4)

将(4)带入(2)中即可得到:
∂ 2 U ∂ z 2 = L ′ C ′ ⋅ ∂ 2 U ∂ t 2 + ( R ′ C ′ + G ′ L ′ ) ⋅ ∂ U ∂ t + R ′ G ′ ⋅ U (5) \frac{\partial^{2}U}{\partial z^{2}}=L' C' \cdot \frac{\partial^2 U}{\partial t^2} +(R' C' + G' L') \cdot \frac{\partial U}{\partial t}+R' G' \cdot U \tag{5} z22U=LCt22U+(RC+GL)tU+RGU(5)

若上述导线为无损导线,即 R ′ = 0 R^{'}=0 R=0 G ′ = 0 G^{'}=0 G=0
∂ 2 U ∂ z 2 = L ′ C ′ ∂ 2 U ∂ t 2 (6) \frac{\partial^2 U}{\partial z^2} = L' C' \frac{\partial^2 U}{\partial t^2}\tag{6} z22U=LCt22U(6)
因此电压公式推导为
U ( z , t ) = f + ( t − z v ) + f − ( t + z v ) (7) U(z,t) = f^+ \left( t - \frac{z}{v} \right) + f^- \left( t + \frac{z}{v} \right)\tag{7} U(z,t)=f+(tvz)+f(t+vz)(7)
证明(7)成立:
对于 f + ( t − z v ) f^+ \left( t - \frac{z}{v} \right) f+(tvz), 我们计算一阶导数和二阶导数( v = 1 L ′ C ′ v = \frac{1}{\sqrt{L^{'}C^{'}}} v=LC 1):

∂ ∂ z f + ( t − z v ) = − 1 v f ′ + ( t − z v ) (8) \frac{\partial}{\partial z} f^+ \left( t - \frac{z}{v} \right) = - \frac{1}{v} f'^+ \left( t - \frac{z}{v} \right)\tag{8} zf+(tvz)=v1f+(tvz)(8)
∂ 2 ∂ z 2 f + ( t − z v ) = 1 v 2 f ′ ′ + ( t − z v ) (9) \frac{\partial^2}{\partial z^2} f^+ \left( t - \frac{z}{v} \right) = \frac{1}{v^2} f''^+ \left( t - \frac{z}{v} \right)\tag{9} z22f+(tvz)=v21f′′+(tvz)(9)
同样的,我们对时间 t t t, 求导:
∂ ∂ t f + ( t − z v ) = f ′ + ( t − z v ) (10) \frac{\partial}{\partial t} f^+ \left( t - \frac{z}{v} \right) = f'^+ \left( t - \frac{z}{v} \right)\tag{10} tf+(tvz)=f+(tvz)(10)
∂ 2 ∂ t 2 f + ( t − z v ) = f ′ ′ + ( t − z v ) (11) \frac{\partial^2}{\partial t^2} f^+ \left( t - \frac{z}{v} \right) = f''^+ \left( t - \frac{z}{v} \right)\tag{11} t22f+(tvz)=f′′+(tvz)(11)

因此,对于 f + f^{+} f+部分,我们有:
∂ 2 ∂ z 2 f + ( t − z v ) = 1 v 2 ∂ 2 ∂ t 2 f + ( t − z v ) (12) \frac{\partial^2}{\partial z^2} f^+ \left( t - \frac{z}{v} \right) = \frac{1}{v^2} \frac{\partial^2}{\partial t^2} f^+ \left( t - \frac{z}{v} \right)\tag{12} z22f+(tvz)=v21t22f+(tvz)(12)
同理:
∂ 2 ∂ z 2 f − ( t + z v ) = 1 v 2 ∂ 2 ∂ t 2 f − ( t + z v ) (13) \frac{\partial^2}{\partial z^2} f^- \left( t + \frac{z}{v} \right) = \frac{1}{v^2} \frac{\partial^2}{\partial t^2} f^- \left( t + \frac{z}{v} \right)\tag{13} z22f(t+vz)=v21t22f(t+vz)(13)
因此:
∂ 2 ∂ z 2 f + ( t − z v ) + ∂ 2 ∂ z 2 f − ( t + z v ) = 1 v 2 ∂ 2 ∂ t 2 f − ( t + z v ) + 1 v 2 ∂ 2 ∂ t 2 f + ( t − z v ) (14) \frac{\partial^2}{\partial z^2} f^+ \left( t - \frac{z}{v} \right)+\frac{\partial^2}{\partial z^2} f^- \left( t + \frac{z}{v} \right) = \frac{1}{v^2} \frac{\partial^2}{\partial t^2} f^- \left( t + \frac{z}{v} \right) +\frac{1}{v^2} \frac{\partial^2}{\partial t^2} f^+ \left( t - \frac{z}{v} \right)\tag{14} z22f+(tvz)+z22f(t+vz)=v21t22f(t+vz)+v21t22f+(tvz)(14)
将(7)代入(14)中即可得(6)。
U ( z , t ) = f + ( t − z v ) + f − ( t + z v ) U(z,t) = f^+ \left( t - \frac{z}{v} \right) + f^- \left( t + \frac{z}{v} \right) U(z,t)=f+(tvz)+f(t+vz)物理意义如下:
导线的实际电压为前进波 f + ( t − z v ) f^+ \left( t - \frac{z}{v} \right) f+(tvz)与反射波 f − ( t + z v ) f^- \left( t + \frac{z}{v} \right) f(t+vz)的叠加
在这里插入图片描述
电流公式
I ( z , t ) = v ⋅ C ′ ( f + ( t − z v ) − f − ( t + z v ) ) (15) I(z, t) = v \cdot C' \left( f^+ \left( t - \frac{z}{v} \right) - f^- \left( t + \frac{z}{v} \right) \right)\tag{15} I(z,t)=vC(f+(tvz)f(t+vz))(15)
推导过程如下:
G ′ = 0 G^{'}=0 G=0代入(4)
− ∂ I ∂ z = C ′ ⋅ ∂ U ∂ t (16) - \frac{\partial I}{\partial z} = C' \cdot \frac{\partial U}{\partial t}\tag{16} zI=CtU(16)
∂ U ∂ t = ∂ ∂ t [ f + ( w + ) + f − ( w − ) ] (17) \frac{\partial U}{\partial t} = \frac{\partial}{\partial t} \left[ f^+ \left( w^+ \right) + f^- \left( w^- \right) \right]\tag{17} tU=t[f+(w+)+f(w)](17)
∂ f + ( w + ) ∂ t = ∂ f + ∂ w + ⋅ ∂ w + ∂ t (18) \frac{\partial f^+(w^+)}{\partial t} = \frac{\partial f^+}{\partial w^+} \cdot \frac{\partial w^+}{\partial t}\tag{18} tf+(w+)=w+f+tw+(18)
w + = t − z v , ∂ w + ∂ t = 1 , ∂ w − ∂ t = 1 (19) w^+ = t - \frac{z}{v}, \quad \frac{\partial w^+}{\partial t} = 1, \quad \frac{\partial w^-}{\partial t} = 1 \tag{19} w+=tvz,tw+=1,tw=1(19)
因此:
∂ f + ∂ t = ∂ f + ∂ w + 及 ∂ f − ∂ t = ∂ f − ∂ w − (20) \frac{\partial f^+}{\partial t} = \frac{\partial f^+}{\partial w^+} \quad 及 \quad \frac{\partial f^-}{\partial t} = \frac{\partial f^-}{\partial w^-}\tag{20} tf+=w+f+tf=wf(20)
∂ f + ( w + ) ∂ z = ∂ f + ∂ w + ⋅ ∂ w + ∂ z (21) \frac{\partial f^+(w^+)}{\partial z} = \frac{\partial f^+}{\partial w^+} \cdot \frac{\partial w^+}{\partial z}\tag{21} zf+(w+)=w+f+zw+(21)

∂ w + ∂ z = − 1 v 及 ∂ w − ∂ z = 1 v (22) \frac{\partial w^+}{\partial z} = - \frac{1}{v} \quad \text{及} \quad \frac{\partial w^-}{\partial z} = \frac{1}{v}\tag{22} zw+=v1zw=v1(22)
∂ ∂ z f + = ∂ f + ∂ w + ⋅ ( − 1 v ) ⇒ ∂ f + ∂ w + = − v ⋅ ∂ f + ∂ z (23) \frac{\partial}{\partial z} f^+ = \frac{\partial f^+}{\partial w^+} \cdot \left( -\frac{1}{v} \right) \quad \Rightarrow \quad \frac{\partial f^+}{\partial w^+} = -v \cdot \frac{\partial f^+}{\partial z}\tag{23} zf+=w+f+(v1)w+f+=vzf+(23)
∂ ∂ z f − = ∂ f − ∂ w − ⋅ ( 1 v ) ⇒ ∂ f − ∂ w − = v ⋅ ∂ f − ∂ z (24) \frac{\partial}{\partial z} f^- = \frac{\partial f^-}{\partial w^-} \cdot \left( \frac{1}{v} \right) \quad \Rightarrow \quad \frac{\partial f^-}{\partial w^-} = v \cdot \frac{\partial f^-}{\partial z}\tag{24} zf=wf(v1)wf=vzf(24)
∂ f + ∂ t = − v ⋅ ∂ f + ∂ z , ∂ f − ∂ t = v ⋅ ∂ f − ∂ z (25) \frac{\partial f^+}{\partial t} = -v \cdot \frac{\partial f^+}{\partial z}, \quad \frac{\partial f^-}{\partial t} = v \cdot \frac{\partial f^-}{\partial z}\tag{25} tf+=vzf+,tf=vzf(25)

∂ U ∂ t = ∂ ∂ t [ f + + f − ] ⇒ ∂ U ∂ t = v ∂ ∂ z [ − f + + f − ] (26) \frac{\partial U}{\partial t} = \frac{\partial}{\partial t} \left[ f^+ + f^- \right] \quad \Rightarrow \quad \frac{\partial U}{\partial t} = v \frac{\partial}{\partial z} \left[ -f^+ + f^- \right]\tag{26} tU=t[f++f]tU=vz[f++f](26)
将(26)代入(16)中:
− ∂ I ∂ z = v ⋅ C ′ ⋅ ∂ ∂ z [ − f + + f − ] (27) - \frac{\partial I}{\partial z} = v \cdot C' \cdot \frac{\partial}{\partial z} \left[ -f^+ + f^- \right]\tag{27} zI=vCz[f++f](27)
因此
I ( z , t ) = v ⋅ C ′ ( f + ( t − z v ) − f − ( t + z v ) ) I(z, t) = v \cdot C' \left( f^+ \left( t - \frac{z}{v} \right) - f^- \left( t + \frac{z}{v} \right) \right) I(z,t)=vC(f+(tvz)f(t+vz))
以下进行反射系数推导:
在这里插入图片描述
U 2 ( t ) = f + ( t − ℓ v ) + f − ( t + ℓ v ) (28) U_2(t) = f^+ \left( t - \frac{\ell}{v} \right) + f^- \left( t + \frac{\ell}{v} \right)\tag{28} U2(t)=f+(tv)+f(t+v)(28)
Z l I 2 ( t ) = f + ( t − ℓ v ) − f − ( t + ℓ v ) (29) Z_l I_2(t) = f^+ \left( t - \frac{\ell}{v} \right) - f^- \left( t + \frac{\ell}{v} \right)\tag{29} ZlI2(t)=f+(tv)f(t+v)(29)
入射波:
f + ( t − ℓ v ) = 1 2 [ U 2 ( t ) + Z l I 2 ( t ) ] = 1 2 I 2 ( t ) ( R L + Z l ) (30) f^+ \left( t - \frac{\ell}{v} \right) = \frac{1}{2} \left[ U_2(t) + Z_l I_2(t) \right] = \frac{1}{2} I_2(t) \left( R_L + Z_l \right)\tag{30} f+(tv)=21[U2(t)+ZlI2(t)]=21I2(t)(RL+Zl)(30)
反射波:
f − ( t + ℓ v ) = 1 2 [ U 2 ( t ) − Z l I 2 ( t ) ] = 1 2 I 2 ( t ) ( R L − Z l ) (31) f^- \left( t + \frac{\ell}{v} \right) = \frac{1}{2} \left[ U_2(t) - Z_l I_2(t) \right] = \frac{1}{2} I_2(t) \left( R_L - Z_l \right)\tag{31} f(t+v)=21[U2(t)ZlI2(t)]=21I2(t)(RLZl)(31)
r L = 反射波 入射波 (32) r_L =\frac{反射波}{入射波}\tag{32} rL=入射波反射波(32)
r L = f − ( t + ℓ v ) f + ( t − ℓ v ) = R L I 2 − Z l I 2 R L I 2 + Z l I 2 (33) r_L = \frac{f^- \left( t + \frac{\ell}{v} \right)}{f^+ \left( t - \frac{\ell}{v} \right)} = \frac{R_L I_2 - Z_l I_2}{R_L I_2 + Z_l I_2}\tag{33} rL=f+(tv)f(t+v)=RLI2+ZlI2RLI2ZlI2(33)
所以
r i = R i − Z ℓ R i + Z ℓ (34) r_i = \frac{R_i - Z_\ell}{R_i + Z_\ell}\tag{34} ri=Ri+ZRiZ(34)
1.2 S matrix推导:
在这里插入图片描述
根据(30)及(31)即可得到入射波,反射波与电流电压关系如下:
a = 1 2 ( u + i ) (35) a = \frac{1}{2}(u + i)\tag{35} a=21(u+i)(35)
b = 1 2 ( u − i ) (36) b = \frac{1}{2}(u - i)\tag{36} b=21(ui)(36)
其中 u u u i i i为归一化后的值:
u = U Z ℓ , i = I Z ℓ (37) u=\frac{U}{\sqrt{Z_\ell}},\quad i=I\sqrt{Z_\ell}\tag{37} u=Z U,i=IZ (37)
s 11 = b 1 a 1 ∣ a 2 = 0 = 1 2 ( u 1 − i 1 ) 1 2 ( u 1 + i 1 ) (38) s_{11} = \frac{b_1}{a_1} \Bigg|_{a_2 = 0} = \frac{\frac{1}{2} (u_1 - i_1)}{\frac{1}{2} (u_1 + i_1)}\tag{38} s11=a1b1 a2=0=21(u1+i1)21(u1i1)(38)
针对 s 11 s_{11} s11 的测量,要求在端口 2无反射。为了使 a 2 = 0 a_2 = 0 a2=0 成立,端口 2 必须与标准阻抗 Z ℓ Z_\ell Z 相匹配终端,这样可以使端口 2 的反射系数为零(端口2端接电阻大小即为归一化电阻大小)。

在这里插入图片描述
s 11 = 1 2 ( u 1 − i 1 ) 1 2 ( u 1 + i 1 ) = Z 1 + Z ℓ Z ℓ i 1 − i 1 Z 1 + Z ℓ Z ℓ i 1 + i 1 = Z 1 Z 1 + 2 Z ℓ (39) s_{11} = \frac{\frac{1}{2}(u_1 - i_1)} {\frac{1}{2} (u_1 + i_1)} = \frac{\frac{Z_1 + Z_\ell}{Z_\ell} i_1 - i_1}{\frac{Z_1 + Z_\ell}{Z_\ell} i_1 + i_1} = \frac{Z_1}{Z_1 + 2 Z_\ell}\tag{39} s11=21(u1+i1)21(u1i1)=ZZ1+Zi1+i1ZZ1+Zi1i1=Z1+2ZZ1(39)
或者:
s 11 = r E = Z E − Z ℓ Z E + Z ℓ 其中 Z E = Z 1 + Z ℓ ⇒ s 11 = Z 1 Z 1 + 2 Z ℓ (40) s_{11} = r_E = \frac{Z_E - Z_\ell}{Z_E + Z_\ell} \quad \text{其中} \quad Z_E = Z_1 + Z_\ell \quad \Rightarrow \quad s_{11} = \frac{Z_1}{Z_1 + 2Z_\ell}\tag{40} s11=rE=ZE+ZZEZ其中ZE=Z1+Zs11=Z1+2ZZ1(40)
同理:
s 21 = 1 2 ( u 2 − i 2 ) 1 2 ( u 1 + i 1 ) = i 1 − ( − i 1 ) Z 1 + Z ℓ Z ℓ i 1 + i 1 = 2 Z ℓ Z 1 + 2 Z ℓ (41) s_{21} = \frac{\frac{1}{2}(u_2 - i_2)}{\frac{1}{2}(u_1 + i_1)} = \frac{i_1 - (-i_1)}{\frac{Z_1 + Z_\ell}{Z_\ell} i_1 + i_1} = \frac{2Z_\ell}{Z_1 + 2Z_\ell}\tag{41} s21=21(u1+i1)21(u2i2)=ZZ1+Zi1+i1i1(i1)=Z1+2Z2Z(41)
根据无源器件对称性及互易性: s 11 = s 22 s_{11}=s_{22} s11=s22 s 12 = s 21 s_{12}=s_{21} s12=s21
所以S matrix为
S = ( Z 1 Z 1 + 2 Z ℓ 2 Z ℓ Z 1 + 2 Z ℓ 2 Z ℓ Z 1 + 2 Z ℓ Z 1 Z 1 + 2 Z ℓ ) (42) S = \left( \begin{array}{cc} \frac{Z_1}{Z_1 + 2Z_\ell} & \frac{2Z_\ell}{Z_1 + 2Z_\ell} \\ \frac{2Z_\ell}{Z_1 + 2Z_\ell} & \frac{Z_1}{Z_1 + 2Z_\ell} \end{array} \right)\tag{42} S=(Z1+2ZZ1Z1+2Z2ZZ1+2Z2ZZ1+2ZZ1)(42)

2. 如何使用 m m m端口VNA测量 n n n端口器件( m ≤ n m\leq n mn):

由(42)可知S matrix与归一化电阻 Z ℓ Z_\ell Z有关。
此结论为论文核心:
A Rigorous Technique for Measuring the Scattering Matrix of a Multiport Device with a 2-Port Network Analyzer
问题:如何通过2端口网分仪器测量4端口器件?
核心思想:
首先通过2端口网分测量:1-2,1-3,1-4,2-3,2-4和3-4端口,即将4端口4x4 的S-matrix通过6次测量填满
在这里插入图片描述
测量1-2端口时,1,2端口接网分(默认接50欧姆电阻),3,4端口端接端口对应电阻 Z 3 Z_3 Z3, Z 4 Z_4 Z4
记此时测得的S matrix为 S S S,后将S matrix根据 Z ℓ 1 = 50 → Z ℓ 1 ′ = Z 1 Z_{\ell1} = 50 \rightarrow Z^{'}_{\ell1} = Z_1 Z1=50Z1=Z1, Z ℓ 2 = 50 → Z ℓ 2 ′ = Z 2 Z_{\ell2} = 50 \rightarrow Z^{'}_{\ell2} = Z_2 Z2=50Z2=Z2进行重新归一化,得到S matrix S ′ S^{'} S
S ′ = ( I − S ) − 1 ( S − Γ ) ( I − S ⋅ Γ ) − 1 ( I − S ) (43) S' = (I - S)^{-1} (S - \Gamma) (I - S \cdot \Gamma)^{-1} (I - S)\tag{43} S=(IS)1(SΓ)(ISΓ)1(IS)(43)
其中, S S S 是归一化到一组端口阻抗 ζ i   ( i = 1 到 n ) \zeta_i \, (i = 1 \text{到} n) ζi(i=1n) 的原始散射矩阵, S ′ S' S 是归一化到一组新的端口阻抗 Z i   ( i = 1 到 n ) Z_i \, (i = 1 \text{到} n) Zi(i=1n) 的变换后的散射矩阵。 I I I n × n n \times n n×n 的单位矩阵, Γ \Gamma Γ 是包含了反射系数 Γ i   ( i = 1 到 n ) \Gamma_i \, (i = 1 \text{到} n) Γi(i=1n) n × n n \times n n×n 对角矩阵。
其他思路:
Multiport S-parameter calculation from two-port network analyzer measurements with or without switch matrix
例子:使用2端口VNA测量三端口器件
三次测量:1-2,1-3,2-3

( b 1 b 2 b 3 ) = ( S 11 S 12 S 13 S 21 S 22 S 23 S 31 S 32 S 33 ) ( a 1 a 2 a 3 ) (44) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}= \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \tag{44} b1b2b3 = S11S21S31S12S22S32S13S23S33 a1a2a3 (44)
两端口校准的矢量网络分析仪(VNA)提供了测量的散射参数 S i i m i S^{mi}_{ii} Siimi,其中 ( i = 1, 2, 3 ) 表示反射参数,而 S i j m S^{m}_{ij} Sijm(( i = 1, 2, 3 ) , ( j = 1, 2, 3 ))表示测试设备(DUT)的传输参数。第一次校准测得的散射参数 S 11 m 1 S^{m1}_{11} S11m1与第二次校准测得的散射参数 S 11 m 2 S^{m2}_{11} S11m2并不相同。两者都是 DUT 的反射值 S 11 S_{11} S11和匹配端口2或3的终端匹配的函数。
三端口器件的反射系数分别为:
S a = a 1 b 1 , S b = a 2 b 2 , S c = a 3 b 3 (45) S_a = \frac{a_1}{b_1}, \quad S_b = \frac{a_2}{b_2}, \quad S_c = \frac{a_3}{b_3}\tag{45} Sa=b1a1,Sb=b2a2,Sc=b3a3(45)
将(45)代入(44)得:
a 3 S c = S 31 a 1 + S 32 a 2 + S 33 a 3 (46) \frac{a_3}{S_c} = S_{31}a_1 + S_{32}a_2 + S_{33}a_3\tag{46} Sca3=S31a1+S32a2+S33a3(46)
a 3 = S 31 1 S c − S 33 a 1 + S 32 1 S c − S 33 a 2 (47) a_3 = \frac{S_{31}}{\frac{1}{S_c} - S_{33}} a_1 + \frac{S_{32}}{\frac{1}{S_c} - S_{33}} a_2\tag{47} a3=Sc1S33S31a1+Sc1S33S32a2(47)

将这个 a 3 a_3 a3的表达式代入 b 1 b_1 b1 b 2 b_2 b2的方程中,我们会得到如下形式:

b 1 = S 11 a 1 + S 12 a 2 + S 13 ( S 31 1 / S c − S 33 a 1 + S 32 1 / S c − S 33 a 2 ) (48) b_1 = S_{11}a_1 + S_{12}a_2 + S_{13} \left( \frac{S_{31}}{1/S_c - S_{33}} a_1 + \frac{S_{32}}{1/S_c - S_{33}} a_2 \right)\tag{48} b1=S11a1+S12a2+S13(1/ScS33S31a1+1/ScS33S32a2)(48)

b 2 = S 21 a 1 + S 22 a 2 + S 23 ( S 31 1 / S c − S 33 a 1 + S 32 1 / S c − S 33 a 2 ) (49) b_2 = S_{21}a_1 + S_{22}a_2 + S_{23} \left( \frac{S_{31}}{1/S_c - S_{33}} a_1 + \frac{S_{32}}{1/S_c - S_{33}} a_2 \right)\tag{49} b2=S21a1+S22a2+S23(1/ScS33S31a1+1/ScS33S32a2)(49)

r c = S c 1 − S 33 S c ≈ S c 1 − S 33 m S c (50) r_c = \frac{S_c}{1 - S_{33} S_c} \approx \frac{S_c}{1 - S_{33}^m S_c}\tag{50} rc=1S33ScSc1S33mScSc(50)

b 1 = ( S 11 + S 13 S 31 r c ) a 1 + ( S 12 + S 13 S 32 r c ) a 2 (51) b_1 = (S_{11} + S_{13}S_{31}r_c) a_1 + (S_{12} + S_{13}S_{32}r_c) a_2\tag{51} b1=(S11+S13S31rc)a1+(S12+S13S32rc)a2(51)
b 2 = ( S 21 + S 23 S 31 r c ) a 1 + ( S 22 + S 23 S 32 r c ) a 2 (52) b_2 = (S_{21} + S_{23}S_{31}r_c) a_1 + (S_{22} + S_{23}S_{32}r_c) a_2\tag{52} b2=(S21+S23S31rc)a1+(S22+S23S32rc)a2(52)
( b 1 b 2 ) = ( S 11 + S 13 S 31 r c S 12 + S 13 S 32 r c S 21 + S 23 S 31 r c S 22 + S 23 S 32 r c ) ⋅ ( a 1 a 2 ) (53) \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} =\begin{pmatrix} S_{11} + S_{13} S_{31} r_c & S_{12} + S_{13} S_{32} r_c \\ S_{21} + S_{23} S_{31} r_c & S_{22} + S_{23} S_{32} r_c \end{pmatrix}\tag{53}\cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} (b1b2)=(S11+S13S31rcS21+S23S31rcS12+S13S32rcS22+S23S32rc)(a1a2)(53)
因此:
( S 11 m 1 S 12 m S 21 m S 22 m 1 ) = ( S 11 + S 13 S 31 r c S 12 + S 13 S 32 r c S 21 + S 23 S 31 r c S 22 + S 23 S 32 r c ) (54) \begin{pmatrix} S_{11}^{m1} & S_{12}^m \\ S_{21}^m & S_{22}^{m1} \end{pmatrix} =\begin{pmatrix} S_{11} + S_{13} S_{31} r_c & S_{12} + S_{13} S_{32} r_c \\ S_{21} + S_{23} S_{31} r_c & S_{22} + S_{23} S_{32} r_c \end{pmatrix}\tag{54} (S11m1S21mS12mS22m1)=(S11+S13S31rcS21+S23S31rcS12+S13S32rcS22+S23S32rc)(54)
同理:
r b = S b 1 − S 22 S b ≈ S b 1 − S 22 m S b (55) r_b = \frac{S_b}{1 - S_{22}S_b} \approx \frac{S_b}{1 - S_{22}^m S_b} \tag{55} rb=1S22SbSb1S22mSbSb(55)

r a = S a 1 − S 11 S a ≈ S a 1 − S 11 m S a (56) r_a = \frac{S_a}{1 - S_{11}S_a} \approx \frac{S_a}{1 - S_{11}^m S_a} \tag{56} ra=1S11SaSa1S11mSaSa(56)
( S 11 m 2 S 13 m S 31 m S 33 m 2 ) = ( S 11 + S 12 S 21 r b S 13 + S 12 S 23 r b S 31 + S 32 S 21 r b S 33 + S 23 S 32 r b ) (57) \begin{pmatrix} S_{11}^{m2} & S_{13}^m \\ S_{31}^m & S_{33}^{m2} \end{pmatrix} =\begin{pmatrix} S_{11} + S_{12}S_{21}r_b & S_{13} + S_{12}S_{23}r_b \\ S_{31} + S_{32}S_{21}r_b & S_{33} + S_{23}S_{32}r_b \end{pmatrix} \tag{57} (S11m2S31mS13mS33m2)=(S11+S12S21rbS31+S32S21rbS13+S12S23rbS33+S23S32rb)(57)
( S 22 m 3 S 23 m S 32 m S 33 m 3 ) = ( S 22 + S 21 S 12 r c S 23 + S 21 S 13 r c S 32 + S 31 S 12 r c S 33 + S 31 S 13 r c ) (58) \begin{pmatrix} S_{22}^{m3} & S_{23}^m \\ S_{32}^m & S_{33}^{m3} \end{pmatrix} =\begin{pmatrix} S_{22} + S_{21}S_{12}r_c & S_{23} + S_{21}S_{13}r_c \\ S_{32} + S_{31}S_{12}r_c & S_{33} + S_{31}S_{13}r_c \end{pmatrix} \tag{58} (S22m3S32mS23mS33m3)=(S22+S21S12rcS32+S31S12rcS23+S21S13rcS33+S31S13rc)(58)

S 11 = 1 2 ( S 11 m 1 + S 11 m 2 − S 13 m S 31 m r c − S 12 m S 21 m r b ) , (59) S_{11} = \frac{1}{2} \left( S_{11}^{m1} + S_{11}^{m2} - S_{13}^m S_{31}^m r_c - S_{12}^m S_{21}^m r_b \right), \tag{59} S11=21(S11m1+S11m2S13mS31mrcS12mS21mrb),(59)

S 22 = 1 2 ( S 22 m 1 + S 22 m 3 − S 12 m S 21 m r a − S 32 m S 23 m r c ) , (60) S_{22} = \frac{1}{2} \left( S_{22}^{m1} + S_{22}^{m3} - S_{12}^m S_{21}^m r_a - S_{32}^m S_{23}^m r_c \right), \tag{60} S22=21(S22m1+S22m3S12mS21mraS32mS23mrc),(60)

S 33 = 1 2 ( S 33 m 2 + S 33 m 3 − S 31 m S 13 m r a − S 23 m S 32 m r b ) , (61) S_{33} = \frac{1}{2} \left( S_{33}^{m2} + S_{33}^{m3} - S_{31}^m S_{13}^m r_a - S_{23}^m S_{32}^m r_b \right), \tag{61} S33=21(S33m2+S33m3S31mS13mraS23mS32mrb),(61)
此处我们认为 S i j m S_{ij}^{m} Sijm的测量误差要远小于 S i i m S_{ii}^{m} Siim的测量误差,因此(59)~(61)用 S i j m S_{ij}^{m} Sijm代替 S i j S_{ij} Sij
S 12 = S 12 m − S 13 m S 32 m r c , (62) S_{12} = S_{12}^m - S_{13}^m S_{32}^m r_c, \tag{62} S12=S12mS13mS32mrc,(62)

S 13 = S 13 m − S 12 m S 23 m r b , (63) S_{13} = S_{13}^m - S_{12}^m S_{23}^m r_b, \tag{63} S13=S13mS12mS23mrb,(63)

S 21 = S 21 m − S 23 m S 31 m r c , (64) S_{21} = S_{21}^m - S_{23}^m S_{31}^m r_c, \tag{64} S21=S21mS23mS31mrc,(64)

S 31 = S 31 m − S 32 m S 12 m r a , (65) S_{31} = S_{31}^m - S_{32}^m S_{12}^m r_a, \tag{65} S31=S31mS32mS12mra,(65)

S 23 = S 23 m − S 21 m S 13 m r b , (66) S_{23} = S_{23}^m - S_{21}^m S_{13}^m r_b, \tag{66} S23=S23mS21mS13mrb,(66)

S 32 = S 32 m − S 31 m S 12 m r a . (67) S_{32} = S_{32}^m - S_{31}^m S_{12}^m r_a. \tag{67} S32=S32mS31mS12mra.(67)
因此,此方法利用多次测量的 S i i m i S_{ii}^{mi} Siimi所得值以及各端口间的相互关系推导出最终反射系数 S i i S_{ii} Sii,充分利用了 m m m端口VNA测量 n n n端口器件时,因VNA端口不足而重复测量的数据。
同理:当使用4端口VNA测量7端口器件时:
S 11 = 1 6 ( S 11 m 1 + S 11 m 2 + S 11 m 3 + S 11 m 4 + S 11 m 5 + S 11 m 6 − S 17 m S 71 m r g − S 16 m S 61 m r f − S 15 m S 51 m r e − S 14 m S 41 m r d − S 13 m S 31 m r c − S 12 m S 21 m r b ) , (68) S_{11} = \frac{1}{6} \left( S_{11}^{m1} + S_{11}^{m2} + S_{11}^{m3}+ S_{11}^{m4}+ S_{11}^{m5}+ S_{11}^{m6}- S_{17}^m S_{71}^m r_g - S_{16}^m S_{61}^m r_f - S_{15}^m S_{51}^m r_e - S_{14}^m S_{41}^m r_d- S_{13}^m S_{31}^m r_c - S_{12}^m S_{21}^m r_b \right), \tag{68} S11=61(S11m1+S11m2+S11m3+S11m4+S11m5+S11m6S17mS71mrgS16mS61mrfS15mS51mreS14mS41mrdS13mS31mrcS12mS21mrb),(68)

S 12 = S 12 m − S 13 m S 32 m r c − S 14 m S 42 m r d − S 15 m S 52 m r e − S 16 m S 62 m r f − S 17 m S 72 m r g (69) S_{12} = S_{12}^m - S_{13}^m S_{32}^m r_c- S_{14}^m S_{42}^m r_d- S_{15}^m S_{52}^m r_e- S_{16}^m S_{62}^m r_f- S_{17}^m S_{72}^m r_g\tag{69} S12=S12mS13mS32mrcS14mS42mrdS15mS52mreS16mS62mrfS17mS72mrg(69)
所以使用4端口VNA测量7端口器件时,需要确保选取测量的对角线元素 S i i m S_{ii}^m Siim能够重复测量6次:
( b 1 b 2 b 3 b 4 b 5 b 6 b 7 ) = ( S 11 S 12 S 13 S 14 S 15 S 16 S 17 S 21 S 22 S 23 S 24 S 25 S 26 S 27 S 31 S 32 S 33 S 34 S 35 S 36 S 37 S 41 S 42 S 43 S 44 S 45 S 46 S 47 S 51 S 52 S 53 S 54 S 55 S 56 S 57 S 61 S 62 S 63 S 64 S 65 S 66 S 67 S 71 S 72 S 73 S 74 S 75 S 76 S 77 ) ( a 1 a 2 a 3 a 4 a 5 a 6 a 7 ) (70) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{pmatrix} =\begin{pmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} & S_{17} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} & S_{27} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} & S_{37} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} & S_{47} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} & S_{57} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} & S_{67} \\ S_{71} & S_{72} & S_{73} & S_{74} & S_{75} & S_{76} & S_{77} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix}\tag{70} b1b2b3b4b5b6b7 = S11S21S31S41S51S61S71S12S22S32S42S52S62S72S13S23S33S43S53S63S73S14S24S34S44S54S64S74S15S25S35S45S55S65S75S16S26S36S46S56S66S76S17S27S37S47S57S67S77 a1a2a3a4a5a6a7 (70)
补充:信号流图
计算方法:
在这里插入图片描述
在这里插入图片描述

例子:
在这里插入图片描述
根据图示可知此器件信号只能从2->5,5->3, 所以:
( b 2 b 3 b 5 ) = ( S 22 S 23 S 25 S 32 S 33 S 35 S 52 S 53 S 55 ) ( a 2 a 3 a 5 ) (1) \begin{pmatrix} b_2 \\ b_3 \\ b_5 \end{pmatrix}= \begin{pmatrix} S_{22} & S_{23} & S_{25} \\ S_{32} & S_{33} & S_{35} \\ S_{52} & S_{53} & S_{55} \end{pmatrix} \begin{pmatrix} a_2 \\ a_3 \\ a_5 \end{pmatrix} \tag{1} b2b3b5 = S22S32S52S23S33S53S25S35S55 a2a3a5 (1)
S 23 S_{23} S23 S 32 S_{32} S32 S 35 S_{35} S35 S 53 = 0 S_{53}=0 S53=0
根据图示及所提供S matrix可画出如下信号流图:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值