1. S matrix推导:
1.1 电流电压及反射系数推导:
其中a代表入射波,b代表反射波,
a
=
1
2
(
u
+
i
)
a=\frac{1}{2}(u+i)
a=21(u+i)及
b
=
1
2
(
u
−
i
)
b=\frac{1}{2}(u-i)
b=21(u−i)推导过程如下:
例子:无穷短导线
等效电路图:
U
(
z
+
d
z
)
+
d
U
=
U
(
z
)
U
(
z
+
d
z
)
−
U
(
z
)
=
−
d
U
∂
U
∂
z
d
z
=
−
d
U
(1)
U(z+dz)+dU=U(z) \tag{1}\\ \\ U(z+dz) - U(z) = -dU \\ \frac{\partial U}{\partial z}dz = -dU
U(z+dz)+dU=U(z)U(z+dz)−U(z)=−dU∂z∂Udz=−dU(1)
d
U
=
R
′
⋅
d
z
⋅
I
+
L
′
⋅
d
z
⋅
∂
I
∂
t
−
∂
U
∂
z
=
R
′
⋅
I
+
L
′
∂
I
∂
t
(2)
dU = R^{'}\cdot dz\cdot I+L^{'}\cdot dz \cdot \frac{\partial I}{\partial t} \tag{2} \\ -\frac{\partial U}{\partial z} = R^{'}\cdot I+L^{'}\frac{\partial I}{\partial t}
dU=R′⋅dz⋅I+L′⋅dz⋅∂t∂I−∂z∂U=R′⋅I+L′∂t∂I(2)
I ( z ) = I ( z + d z ) + d I I ( z + d z ) − I ( z ) = − d I ∂ I ∂ Z d z = − d I (3) I(z)=I(z+dz)+dI \tag{3}\\ I(z+dz) - I(z) = -dI\\ \frac{\partial I}{\partial Z}dz = -dI I(z)=I(z+dz)+dII(z+dz)−I(z)=−dI∂Z∂Idz=−dI(3)
d I = G ′ ⋅ d z ( U − d U ) + C ′ ⋅ d z ⋅ ∂ ( U − d U ) ∂ t d I ≈ G ′ ⋅ d z ⋅ U + C ′ ⋅ d z ⋅ ∂ U ∂ t − ∂ I ∂ z = G ′ ⋅ U + C ′ ∂ U ∂ t (4) dI =G^{'}\cdot dz(U-dU) +C^{'}\cdot dz \cdot \frac{\partial (U-dU)}{\partial t}\\ dI \approx G^{'}\cdot dz \cdot U + C^{'}\cdot dz \cdot \frac{\partial U}{\partial t}\\ -\frac{\partial I}{\partial z} = G^{'}\cdot U+C^{'}\frac{\partial U}{\partial t}\tag{4} dI=G′⋅dz(U−dU)+C′⋅dz⋅∂t∂(U−dU)dI≈G′⋅dz⋅U+C′⋅dz⋅∂t∂U−∂z∂I=G′⋅U+C′∂t∂U(4)
将(4)带入(2)中即可得到:
∂
2
U
∂
z
2
=
L
′
C
′
⋅
∂
2
U
∂
t
2
+
(
R
′
C
′
+
G
′
L
′
)
⋅
∂
U
∂
t
+
R
′
G
′
⋅
U
(5)
\frac{\partial^{2}U}{\partial z^{2}}=L' C' \cdot \frac{\partial^2 U}{\partial t^2} +(R' C' + G' L') \cdot \frac{\partial U}{\partial t}+R' G' \cdot U \tag{5}
∂z2∂2U=L′C′⋅∂t2∂2U+(R′C′+G′L′)⋅∂t∂U+R′G′⋅U(5)
若上述导线为无损导线,即
R
′
=
0
R^{'}=0
R′=0和
G
′
=
0
G^{'}=0
G′=0:
∂
2
U
∂
z
2
=
L
′
C
′
∂
2
U
∂
t
2
(6)
\frac{\partial^2 U}{\partial z^2} = L' C' \frac{\partial^2 U}{\partial t^2}\tag{6}
∂z2∂2U=L′C′∂t2∂2U(6)
因此电压公式推导为:
U
(
z
,
t
)
=
f
+
(
t
−
z
v
)
+
f
−
(
t
+
z
v
)
(7)
U(z,t) = f^+ \left( t - \frac{z}{v} \right) + f^- \left( t + \frac{z}{v} \right)\tag{7}
U(z,t)=f+(t−vz)+f−(t+vz)(7)
证明(7)成立:
对于
f
+
(
t
−
z
v
)
f^+ \left( t - \frac{z}{v} \right)
f+(t−vz), 我们计算一阶导数和二阶导数(
v
=
1
L
′
C
′
v = \frac{1}{\sqrt{L^{'}C^{'}}}
v=L′C′1):
∂
∂
z
f
+
(
t
−
z
v
)
=
−
1
v
f
′
+
(
t
−
z
v
)
(8)
\frac{\partial}{\partial z} f^+ \left( t - \frac{z}{v} \right) = - \frac{1}{v} f'^+ \left( t - \frac{z}{v} \right)\tag{8}
∂z∂f+(t−vz)=−v1f′+(t−vz)(8)
∂
2
∂
z
2
f
+
(
t
−
z
v
)
=
1
v
2
f
′
′
+
(
t
−
z
v
)
(9)
\frac{\partial^2}{\partial z^2} f^+ \left( t - \frac{z}{v} \right) = \frac{1}{v^2} f''^+ \left( t - \frac{z}{v} \right)\tag{9}
∂z2∂2f+(t−vz)=v21f′′+(t−vz)(9)
同样的,我们对时间
t
t
t, 求导:
∂
∂
t
f
+
(
t
−
z
v
)
=
f
′
+
(
t
−
z
v
)
(10)
\frac{\partial}{\partial t} f^+ \left( t - \frac{z}{v} \right) = f'^+ \left( t - \frac{z}{v} \right)\tag{10}
∂t∂f+(t−vz)=f′+(t−vz)(10)
∂
2
∂
t
2
f
+
(
t
−
z
v
)
=
f
′
′
+
(
t
−
z
v
)
(11)
\frac{\partial^2}{\partial t^2} f^+ \left( t - \frac{z}{v} \right) = f''^+ \left( t - \frac{z}{v} \right)\tag{11}
∂t2∂2f+(t−vz)=f′′+(t−vz)(11)
因此,对于
f
+
f^{+}
f+部分,我们有:
∂
2
∂
z
2
f
+
(
t
−
z
v
)
=
1
v
2
∂
2
∂
t
2
f
+
(
t
−
z
v
)
(12)
\frac{\partial^2}{\partial z^2} f^+ \left( t - \frac{z}{v} \right) = \frac{1}{v^2} \frac{\partial^2}{\partial t^2} f^+ \left( t - \frac{z}{v} \right)\tag{12}
∂z2∂2f+(t−vz)=v21∂t2∂2f+(t−vz)(12)
同理:
∂
2
∂
z
2
f
−
(
t
+
z
v
)
=
1
v
2
∂
2
∂
t
2
f
−
(
t
+
z
v
)
(13)
\frac{\partial^2}{\partial z^2} f^- \left( t + \frac{z}{v} \right) = \frac{1}{v^2} \frac{\partial^2}{\partial t^2} f^- \left( t + \frac{z}{v} \right)\tag{13}
∂z2∂2f−(t+vz)=v21∂t2∂2f−(t+vz)(13)
因此:
∂
2
∂
z
2
f
+
(
t
−
z
v
)
+
∂
2
∂
z
2
f
−
(
t
+
z
v
)
=
1
v
2
∂
2
∂
t
2
f
−
(
t
+
z
v
)
+
1
v
2
∂
2
∂
t
2
f
+
(
t
−
z
v
)
(14)
\frac{\partial^2}{\partial z^2} f^+ \left( t - \frac{z}{v} \right)+\frac{\partial^2}{\partial z^2} f^- \left( t + \frac{z}{v} \right) = \frac{1}{v^2} \frac{\partial^2}{\partial t^2} f^- \left( t + \frac{z}{v} \right) +\frac{1}{v^2} \frac{\partial^2}{\partial t^2} f^+ \left( t - \frac{z}{v} \right)\tag{14}
∂z2∂2f+(t−vz)+∂z2∂2f−(t+vz)=v21∂t2∂2f−(t+vz)+v21∂t2∂2f+(t−vz)(14)
将(7)代入(14)中即可得(6)。
U
(
z
,
t
)
=
f
+
(
t
−
z
v
)
+
f
−
(
t
+
z
v
)
U(z,t) = f^+ \left( t - \frac{z}{v} \right) + f^- \left( t + \frac{z}{v} \right)
U(z,t)=f+(t−vz)+f−(t+vz)物理意义如下:
导线的实际电压为前进波
f
+
(
t
−
z
v
)
f^+ \left( t - \frac{z}{v} \right)
f+(t−vz)与反射波
f
−
(
t
+
z
v
)
f^- \left( t + \frac{z}{v} \right)
f−(t+vz)的叠加
电流公式:
I
(
z
,
t
)
=
v
⋅
C
′
(
f
+
(
t
−
z
v
)
−
f
−
(
t
+
z
v
)
)
(15)
I(z, t) = v \cdot C' \left( f^+ \left( t - \frac{z}{v} \right) - f^- \left( t + \frac{z}{v} \right) \right)\tag{15}
I(z,t)=v⋅C′(f+(t−vz)−f−(t+vz))(15)
推导过程如下:
G
′
=
0
G^{'}=0
G′=0代入(4)
−
∂
I
∂
z
=
C
′
⋅
∂
U
∂
t
(16)
- \frac{\partial I}{\partial z} = C' \cdot \frac{\partial U}{\partial t}\tag{16}
−∂z∂I=C′⋅∂t∂U(16)
∂
U
∂
t
=
∂
∂
t
[
f
+
(
w
+
)
+
f
−
(
w
−
)
]
(17)
\frac{\partial U}{\partial t} = \frac{\partial}{\partial t} \left[ f^+ \left( w^+ \right) + f^- \left( w^- \right) \right]\tag{17}
∂t∂U=∂t∂[f+(w+)+f−(w−)](17)
∂
f
+
(
w
+
)
∂
t
=
∂
f
+
∂
w
+
⋅
∂
w
+
∂
t
(18)
\frac{\partial f^+(w^+)}{\partial t} = \frac{\partial f^+}{\partial w^+} \cdot \frac{\partial w^+}{\partial t}\tag{18}
∂t∂f+(w+)=∂w+∂f+⋅∂t∂w+(18)
w
+
=
t
−
z
v
,
∂
w
+
∂
t
=
1
,
∂
w
−
∂
t
=
1
(19)
w^+ = t - \frac{z}{v}, \quad \frac{\partial w^+}{\partial t} = 1, \quad \frac{\partial w^-}{\partial t} = 1 \tag{19}
w+=t−vz,∂t∂w+=1,∂t∂w−=1(19)
因此:
∂
f
+
∂
t
=
∂
f
+
∂
w
+
及
∂
f
−
∂
t
=
∂
f
−
∂
w
−
(20)
\frac{\partial f^+}{\partial t} = \frac{\partial f^+}{\partial w^+} \quad 及 \quad \frac{\partial f^-}{\partial t} = \frac{\partial f^-}{\partial w^-}\tag{20}
∂t∂f+=∂w+∂f+及∂t∂f−=∂w−∂f−(20)
∂
f
+
(
w
+
)
∂
z
=
∂
f
+
∂
w
+
⋅
∂
w
+
∂
z
(21)
\frac{\partial f^+(w^+)}{\partial z} = \frac{\partial f^+}{\partial w^+} \cdot \frac{\partial w^+}{\partial z}\tag{21}
∂z∂f+(w+)=∂w+∂f+⋅∂z∂w+(21)
∂
w
+
∂
z
=
−
1
v
及
∂
w
−
∂
z
=
1
v
(22)
\frac{\partial w^+}{\partial z} = - \frac{1}{v} \quad \text{及} \quad \frac{\partial w^-}{\partial z} = \frac{1}{v}\tag{22}
∂z∂w+=−v1及∂z∂w−=v1(22)
∂
∂
z
f
+
=
∂
f
+
∂
w
+
⋅
(
−
1
v
)
⇒
∂
f
+
∂
w
+
=
−
v
⋅
∂
f
+
∂
z
(23)
\frac{\partial}{\partial z} f^+ = \frac{\partial f^+}{\partial w^+} \cdot \left( -\frac{1}{v} \right) \quad \Rightarrow \quad \frac{\partial f^+}{\partial w^+} = -v \cdot \frac{\partial f^+}{\partial z}\tag{23}
∂z∂f+=∂w+∂f+⋅(−v1)⇒∂w+∂f+=−v⋅∂z∂f+(23)
∂
∂
z
f
−
=
∂
f
−
∂
w
−
⋅
(
1
v
)
⇒
∂
f
−
∂
w
−
=
v
⋅
∂
f
−
∂
z
(24)
\frac{\partial}{\partial z} f^- = \frac{\partial f^-}{\partial w^-} \cdot \left( \frac{1}{v} \right) \quad \Rightarrow \quad \frac{\partial f^-}{\partial w^-} = v \cdot \frac{\partial f^-}{\partial z}\tag{24}
∂z∂f−=∂w−∂f−⋅(v1)⇒∂w−∂f−=v⋅∂z∂f−(24)
∂
f
+
∂
t
=
−
v
⋅
∂
f
+
∂
z
,
∂
f
−
∂
t
=
v
⋅
∂
f
−
∂
z
(25)
\frac{\partial f^+}{\partial t} = -v \cdot \frac{\partial f^+}{\partial z}, \quad \frac{\partial f^-}{\partial t} = v \cdot \frac{\partial f^-}{\partial z}\tag{25}
∂t∂f+=−v⋅∂z∂f+,∂t∂f−=v⋅∂z∂f−(25)
∂
U
∂
t
=
∂
∂
t
[
f
+
+
f
−
]
⇒
∂
U
∂
t
=
v
∂
∂
z
[
−
f
+
+
f
−
]
(26)
\frac{\partial U}{\partial t} = \frac{\partial}{\partial t} \left[ f^+ + f^- \right] \quad \Rightarrow \quad \frac{\partial U}{\partial t} = v \frac{\partial}{\partial z} \left[ -f^+ + f^- \right]\tag{26}
∂t∂U=∂t∂[f++f−]⇒∂t∂U=v∂z∂[−f++f−](26)
将(26)代入(16)中:
−
∂
I
∂
z
=
v
⋅
C
′
⋅
∂
∂
z
[
−
f
+
+
f
−
]
(27)
- \frac{\partial I}{\partial z} = v \cdot C' \cdot \frac{\partial}{\partial z} \left[ -f^+ + f^- \right]\tag{27}
−∂z∂I=v⋅C′⋅∂z∂[−f++f−](27)
因此:
I
(
z
,
t
)
=
v
⋅
C
′
(
f
+
(
t
−
z
v
)
−
f
−
(
t
+
z
v
)
)
I(z, t) = v \cdot C' \left( f^+ \left( t - \frac{z}{v} \right) - f^- \left( t + \frac{z}{v} \right) \right)
I(z,t)=v⋅C′(f+(t−vz)−f−(t+vz))
以下进行反射系数推导:
U
2
(
t
)
=
f
+
(
t
−
ℓ
v
)
+
f
−
(
t
+
ℓ
v
)
(28)
U_2(t) = f^+ \left( t - \frac{\ell}{v} \right) + f^- \left( t + \frac{\ell}{v} \right)\tag{28}
U2(t)=f+(t−vℓ)+f−(t+vℓ)(28)
Z
l
I
2
(
t
)
=
f
+
(
t
−
ℓ
v
)
−
f
−
(
t
+
ℓ
v
)
(29)
Z_l I_2(t) = f^+ \left( t - \frac{\ell}{v} \right) - f^- \left( t + \frac{\ell}{v} \right)\tag{29}
ZlI2(t)=f+(t−vℓ)−f−(t+vℓ)(29)
入射波:
f
+
(
t
−
ℓ
v
)
=
1
2
[
U
2
(
t
)
+
Z
l
I
2
(
t
)
]
=
1
2
I
2
(
t
)
(
R
L
+
Z
l
)
(30)
f^+ \left( t - \frac{\ell}{v} \right) = \frac{1}{2} \left[ U_2(t) + Z_l I_2(t) \right] = \frac{1}{2} I_2(t) \left( R_L + Z_l \right)\tag{30}
f+(t−vℓ)=21[U2(t)+ZlI2(t)]=21I2(t)(RL+Zl)(30)
反射波:
f
−
(
t
+
ℓ
v
)
=
1
2
[
U
2
(
t
)
−
Z
l
I
2
(
t
)
]
=
1
2
I
2
(
t
)
(
R
L
−
Z
l
)
(31)
f^- \left( t + \frac{\ell}{v} \right) = \frac{1}{2} \left[ U_2(t) - Z_l I_2(t) \right] = \frac{1}{2} I_2(t) \left( R_L - Z_l \right)\tag{31}
f−(t+vℓ)=21[U2(t)−ZlI2(t)]=21I2(t)(RL−Zl)(31)
r
L
=
反射波
入射波
(32)
r_L =\frac{反射波}{入射波}\tag{32}
rL=入射波反射波(32)
r
L
=
f
−
(
t
+
ℓ
v
)
f
+
(
t
−
ℓ
v
)
=
R
L
I
2
−
Z
l
I
2
R
L
I
2
+
Z
l
I
2
(33)
r_L = \frac{f^- \left( t + \frac{\ell}{v} \right)}{f^+ \left( t - \frac{\ell}{v} \right)} = \frac{R_L I_2 - Z_l I_2}{R_L I_2 + Z_l I_2}\tag{33}
rL=f+(t−vℓ)f−(t+vℓ)=RLI2+ZlI2RLI2−ZlI2(33)
所以:
r
i
=
R
i
−
Z
ℓ
R
i
+
Z
ℓ
(34)
r_i = \frac{R_i - Z_\ell}{R_i + Z_\ell}\tag{34}
ri=Ri+ZℓRi−Zℓ(34)
1.2 S matrix推导:
根据(30)及(31)即可得到入射波,反射波与电流电压关系如下:
a
=
1
2
(
u
+
i
)
(35)
a = \frac{1}{2}(u + i)\tag{35}
a=21(u+i)(35)
b
=
1
2
(
u
−
i
)
(36)
b = \frac{1}{2}(u - i)\tag{36}
b=21(u−i)(36)
其中
u
u
u和
i
i
i为归一化后的值:
u
=
U
Z
ℓ
,
i
=
I
Z
ℓ
(37)
u=\frac{U}{\sqrt{Z_\ell}},\quad i=I\sqrt{Z_\ell}\tag{37}
u=ZℓU,i=IZℓ(37)
s
11
=
b
1
a
1
∣
a
2
=
0
=
1
2
(
u
1
−
i
1
)
1
2
(
u
1
+
i
1
)
(38)
s_{11} = \frac{b_1}{a_1} \Bigg|_{a_2 = 0} = \frac{\frac{1}{2} (u_1 - i_1)}{\frac{1}{2} (u_1 + i_1)}\tag{38}
s11=a1b1
a2=0=21(u1+i1)21(u1−i1)(38)
针对
s
11
s_{11}
s11 的测量,要求在端口 2无反射。为了使
a
2
=
0
a_2 = 0
a2=0 成立,端口 2 必须与标准阻抗
Z
ℓ
Z_\ell
Zℓ 相匹配终端,这样可以使端口 2 的反射系数为零(端口2端接电阻大小即为归一化电阻大小)。
s
11
=
1
2
(
u
1
−
i
1
)
1
2
(
u
1
+
i
1
)
=
Z
1
+
Z
ℓ
Z
ℓ
i
1
−
i
1
Z
1
+
Z
ℓ
Z
ℓ
i
1
+
i
1
=
Z
1
Z
1
+
2
Z
ℓ
(39)
s_{11} = \frac{\frac{1}{2}(u_1 - i_1)} {\frac{1}{2} (u_1 + i_1)} = \frac{\frac{Z_1 + Z_\ell}{Z_\ell} i_1 - i_1}{\frac{Z_1 + Z_\ell}{Z_\ell} i_1 + i_1} = \frac{Z_1}{Z_1 + 2 Z_\ell}\tag{39}
s11=21(u1+i1)21(u1−i1)=ZℓZ1+Zℓi1+i1ZℓZ1+Zℓi1−i1=Z1+2ZℓZ1(39)
或者:
s
11
=
r
E
=
Z
E
−
Z
ℓ
Z
E
+
Z
ℓ
其中
Z
E
=
Z
1
+
Z
ℓ
⇒
s
11
=
Z
1
Z
1
+
2
Z
ℓ
(40)
s_{11} = r_E = \frac{Z_E - Z_\ell}{Z_E + Z_\ell} \quad \text{其中} \quad Z_E = Z_1 + Z_\ell \quad \Rightarrow \quad s_{11} = \frac{Z_1}{Z_1 + 2Z_\ell}\tag{40}
s11=rE=ZE+ZℓZE−Zℓ其中ZE=Z1+Zℓ⇒s11=Z1+2ZℓZ1(40)
同理:
s
21
=
1
2
(
u
2
−
i
2
)
1
2
(
u
1
+
i
1
)
=
i
1
−
(
−
i
1
)
Z
1
+
Z
ℓ
Z
ℓ
i
1
+
i
1
=
2
Z
ℓ
Z
1
+
2
Z
ℓ
(41)
s_{21} = \frac{\frac{1}{2}(u_2 - i_2)}{\frac{1}{2}(u_1 + i_1)} = \frac{i_1 - (-i_1)}{\frac{Z_1 + Z_\ell}{Z_\ell} i_1 + i_1} = \frac{2Z_\ell}{Z_1 + 2Z_\ell}\tag{41}
s21=21(u1+i1)21(u2−i2)=ZℓZ1+Zℓi1+i1i1−(−i1)=Z1+2Zℓ2Zℓ(41)
根据无源器件对称性及互易性:
s
11
=
s
22
s_{11}=s_{22}
s11=s22,
s
12
=
s
21
s_{12}=s_{21}
s12=s21。
所以S matrix为:
S
=
(
Z
1
Z
1
+
2
Z
ℓ
2
Z
ℓ
Z
1
+
2
Z
ℓ
2
Z
ℓ
Z
1
+
2
Z
ℓ
Z
1
Z
1
+
2
Z
ℓ
)
(42)
S = \left( \begin{array}{cc} \frac{Z_1}{Z_1 + 2Z_\ell} & \frac{2Z_\ell}{Z_1 + 2Z_\ell} \\ \frac{2Z_\ell}{Z_1 + 2Z_\ell} & \frac{Z_1}{Z_1 + 2Z_\ell} \end{array} \right)\tag{42}
S=(Z1+2ZℓZ1Z1+2Zℓ2ZℓZ1+2Zℓ2ZℓZ1+2ZℓZ1)(42)
2. 如何使用 m m m端口VNA测量 n n n端口器件( m ≤ n m\leq n m≤n):
由(42)可知S matrix与归一化电阻
Z
ℓ
Z_\ell
Zℓ有关。
此结论为论文核心:
A Rigorous Technique for Measuring the Scattering Matrix of a Multiport Device with a 2-Port Network Analyzer
问题:如何通过2端口网分仪器测量4端口器件?
核心思想:
首先通过2端口网分测量:1-2,1-3,1-4,2-3,2-4和3-4端口,即将4端口4x4 的S-matrix通过6次测量填满
测量1-2端口时,1,2端口接网分(默认接50欧姆电阻),3,4端口端接端口对应电阻
Z
3
Z_3
Z3,
Z
4
Z_4
Z4
记此时测得的S matrix为
S
S
S,后将S matrix根据
Z
ℓ
1
=
50
→
Z
ℓ
1
′
=
Z
1
Z_{\ell1} = 50 \rightarrow Z^{'}_{\ell1} = Z_1
Zℓ1=50→Zℓ1′=Z1,
Z
ℓ
2
=
50
→
Z
ℓ
2
′
=
Z
2
Z_{\ell2} = 50 \rightarrow Z^{'}_{\ell2} = Z_2
Zℓ2=50→Zℓ2′=Z2进行重新归一化,得到S matrix
S
′
S^{'}
S′
S
′
=
(
I
−
S
)
−
1
(
S
−
Γ
)
(
I
−
S
⋅
Γ
)
−
1
(
I
−
S
)
(43)
S' = (I - S)^{-1} (S - \Gamma) (I - S \cdot \Gamma)^{-1} (I - S)\tag{43}
S′=(I−S)−1(S−Γ)(I−S⋅Γ)−1(I−S)(43)
其中,
S
S
S 是归一化到一组端口阻抗
ζ
i
(
i
=
1
到
n
)
\zeta_i \, (i = 1 \text{到} n)
ζi(i=1到n) 的原始散射矩阵,
S
′
S'
S′ 是归一化到一组新的端口阻抗
Z
i
(
i
=
1
到
n
)
Z_i \, (i = 1 \text{到} n)
Zi(i=1到n) 的变换后的散射矩阵。
I
I
I 是
n
×
n
n \times n
n×n 的单位矩阵,
Γ
\Gamma
Γ 是包含了反射系数
Γ
i
(
i
=
1
到
n
)
\Gamma_i \, (i = 1 \text{到} n)
Γi(i=1到n) 的
n
×
n
n \times n
n×n 对角矩阵。
其他思路:
Multiport S-parameter calculation from two-port network analyzer measurements with or without switch matrix
例子:使用2端口VNA测量三端口器件
三次测量:1-2,1-3,2-3
(
b
1
b
2
b
3
)
=
(
S
11
S
12
S
13
S
21
S
22
S
23
S
31
S
32
S
33
)
(
a
1
a
2
a
3
)
(44)
\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}= \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \tag{44}
b1b2b3
=
S11S21S31S12S22S32S13S23S33
a1a2a3
(44)
两端口校准的矢量网络分析仪(VNA)提供了测量的散射参数
S
i
i
m
i
S^{mi}_{ii}
Siimi,其中 ( i = 1, 2, 3 ) 表示反射参数,而
S
i
j
m
S^{m}_{ij}
Sijm(( i = 1, 2, 3 ) , ( j = 1, 2, 3 ))表示测试设备(DUT)的传输参数。第一次校准测得的散射参数
S
11
m
1
S^{m1}_{11}
S11m1与第二次校准测得的散射参数
S
11
m
2
S^{m2}_{11}
S11m2并不相同。两者都是 DUT 的反射值
S
11
S_{11}
S11和匹配端口2或3的终端匹配的函数。
三端口器件的反射系数分别为:
S
a
=
a
1
b
1
,
S
b
=
a
2
b
2
,
S
c
=
a
3
b
3
(45)
S_a = \frac{a_1}{b_1}, \quad S_b = \frac{a_2}{b_2}, \quad S_c = \frac{a_3}{b_3}\tag{45}
Sa=b1a1,Sb=b2a2,Sc=b3a3(45)
将(45)代入(44)得:
a
3
S
c
=
S
31
a
1
+
S
32
a
2
+
S
33
a
3
(46)
\frac{a_3}{S_c} = S_{31}a_1 + S_{32}a_2 + S_{33}a_3\tag{46}
Sca3=S31a1+S32a2+S33a3(46)
a
3
=
S
31
1
S
c
−
S
33
a
1
+
S
32
1
S
c
−
S
33
a
2
(47)
a_3 = \frac{S_{31}}{\frac{1}{S_c} - S_{33}} a_1 + \frac{S_{32}}{\frac{1}{S_c} - S_{33}} a_2\tag{47}
a3=Sc1−S33S31a1+Sc1−S33S32a2(47)
将这个 a 3 a_3 a3的表达式代入 b 1 b_1 b1和 b 2 b_2 b2的方程中,我们会得到如下形式:
b 1 = S 11 a 1 + S 12 a 2 + S 13 ( S 31 1 / S c − S 33 a 1 + S 32 1 / S c − S 33 a 2 ) (48) b_1 = S_{11}a_1 + S_{12}a_2 + S_{13} \left( \frac{S_{31}}{1/S_c - S_{33}} a_1 + \frac{S_{32}}{1/S_c - S_{33}} a_2 \right)\tag{48} b1=S11a1+S12a2+S13(1/Sc−S33S31a1+1/Sc−S33S32a2)(48)
b 2 = S 21 a 1 + S 22 a 2 + S 23 ( S 31 1 / S c − S 33 a 1 + S 32 1 / S c − S 33 a 2 ) (49) b_2 = S_{21}a_1 + S_{22}a_2 + S_{23} \left( \frac{S_{31}}{1/S_c - S_{33}} a_1 + \frac{S_{32}}{1/S_c - S_{33}} a_2 \right)\tag{49} b2=S21a1+S22a2+S23(1/Sc−S33S31a1+1/Sc−S33S32a2)(49)
r c = S c 1 − S 33 S c ≈ S c 1 − S 33 m S c (50) r_c = \frac{S_c}{1 - S_{33} S_c} \approx \frac{S_c}{1 - S_{33}^m S_c}\tag{50} rc=1−S33ScSc≈1−S33mScSc(50)
b
1
=
(
S
11
+
S
13
S
31
r
c
)
a
1
+
(
S
12
+
S
13
S
32
r
c
)
a
2
(51)
b_1 = (S_{11} + S_{13}S_{31}r_c) a_1 + (S_{12} + S_{13}S_{32}r_c) a_2\tag{51}
b1=(S11+S13S31rc)a1+(S12+S13S32rc)a2(51)
b
2
=
(
S
21
+
S
23
S
31
r
c
)
a
1
+
(
S
22
+
S
23
S
32
r
c
)
a
2
(52)
b_2 = (S_{21} + S_{23}S_{31}r_c) a_1 + (S_{22} + S_{23}S_{32}r_c) a_2\tag{52}
b2=(S21+S23S31rc)a1+(S22+S23S32rc)a2(52)
(
b
1
b
2
)
=
(
S
11
+
S
13
S
31
r
c
S
12
+
S
13
S
32
r
c
S
21
+
S
23
S
31
r
c
S
22
+
S
23
S
32
r
c
)
⋅
(
a
1
a
2
)
(53)
\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} =\begin{pmatrix} S_{11} + S_{13} S_{31} r_c & S_{12} + S_{13} S_{32} r_c \\ S_{21} + S_{23} S_{31} r_c & S_{22} + S_{23} S_{32} r_c \end{pmatrix}\tag{53}\cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}
(b1b2)=(S11+S13S31rcS21+S23S31rcS12+S13S32rcS22+S23S32rc)⋅(a1a2)(53)
因此:
(
S
11
m
1
S
12
m
S
21
m
S
22
m
1
)
=
(
S
11
+
S
13
S
31
r
c
S
12
+
S
13
S
32
r
c
S
21
+
S
23
S
31
r
c
S
22
+
S
23
S
32
r
c
)
(54)
\begin{pmatrix} S_{11}^{m1} & S_{12}^m \\ S_{21}^m & S_{22}^{m1} \end{pmatrix} =\begin{pmatrix} S_{11} + S_{13} S_{31} r_c & S_{12} + S_{13} S_{32} r_c \\ S_{21} + S_{23} S_{31} r_c & S_{22} + S_{23} S_{32} r_c \end{pmatrix}\tag{54}
(S11m1S21mS12mS22m1)=(S11+S13S31rcS21+S23S31rcS12+S13S32rcS22+S23S32rc)(54)
同理:
r
b
=
S
b
1
−
S
22
S
b
≈
S
b
1
−
S
22
m
S
b
(55)
r_b = \frac{S_b}{1 - S_{22}S_b} \approx \frac{S_b}{1 - S_{22}^m S_b} \tag{55}
rb=1−S22SbSb≈1−S22mSbSb(55)
r
a
=
S
a
1
−
S
11
S
a
≈
S
a
1
−
S
11
m
S
a
(56)
r_a = \frac{S_a}{1 - S_{11}S_a} \approx \frac{S_a}{1 - S_{11}^m S_a} \tag{56}
ra=1−S11SaSa≈1−S11mSaSa(56)
(
S
11
m
2
S
13
m
S
31
m
S
33
m
2
)
=
(
S
11
+
S
12
S
21
r
b
S
13
+
S
12
S
23
r
b
S
31
+
S
32
S
21
r
b
S
33
+
S
23
S
32
r
b
)
(57)
\begin{pmatrix} S_{11}^{m2} & S_{13}^m \\ S_{31}^m & S_{33}^{m2} \end{pmatrix} =\begin{pmatrix} S_{11} + S_{12}S_{21}r_b & S_{13} + S_{12}S_{23}r_b \\ S_{31} + S_{32}S_{21}r_b & S_{33} + S_{23}S_{32}r_b \end{pmatrix} \tag{57}
(S11m2S31mS13mS33m2)=(S11+S12S21rbS31+S32S21rbS13+S12S23rbS33+S23S32rb)(57)
(
S
22
m
3
S
23
m
S
32
m
S
33
m
3
)
=
(
S
22
+
S
21
S
12
r
c
S
23
+
S
21
S
13
r
c
S
32
+
S
31
S
12
r
c
S
33
+
S
31
S
13
r
c
)
(58)
\begin{pmatrix} S_{22}^{m3} & S_{23}^m \\ S_{32}^m & S_{33}^{m3} \end{pmatrix} =\begin{pmatrix} S_{22} + S_{21}S_{12}r_c & S_{23} + S_{21}S_{13}r_c \\ S_{32} + S_{31}S_{12}r_c & S_{33} + S_{31}S_{13}r_c \end{pmatrix} \tag{58}
(S22m3S32mS23mS33m3)=(S22+S21S12rcS32+S31S12rcS23+S21S13rcS33+S31S13rc)(58)
S 11 = 1 2 ( S 11 m 1 + S 11 m 2 − S 13 m S 31 m r c − S 12 m S 21 m r b ) , (59) S_{11} = \frac{1}{2} \left( S_{11}^{m1} + S_{11}^{m2} - S_{13}^m S_{31}^m r_c - S_{12}^m S_{21}^m r_b \right), \tag{59} S11=21(S11m1+S11m2−S13mS31mrc−S12mS21mrb),(59)
S 22 = 1 2 ( S 22 m 1 + S 22 m 3 − S 12 m S 21 m r a − S 32 m S 23 m r c ) , (60) S_{22} = \frac{1}{2} \left( S_{22}^{m1} + S_{22}^{m3} - S_{12}^m S_{21}^m r_a - S_{32}^m S_{23}^m r_c \right), \tag{60} S22=21(S22m1+S22m3−S12mS21mra−S32mS23mrc),(60)
S
33
=
1
2
(
S
33
m
2
+
S
33
m
3
−
S
31
m
S
13
m
r
a
−
S
23
m
S
32
m
r
b
)
,
(61)
S_{33} = \frac{1}{2} \left( S_{33}^{m2} + S_{33}^{m3} - S_{31}^m S_{13}^m r_a - S_{23}^m S_{32}^m r_b \right), \tag{61}
S33=21(S33m2+S33m3−S31mS13mra−S23mS32mrb),(61)
此处我们认为
S
i
j
m
S_{ij}^{m}
Sijm的测量误差要远小于
S
i
i
m
S_{ii}^{m}
Siim的测量误差,因此(59)~(61)用
S
i
j
m
S_{ij}^{m}
Sijm代替
S
i
j
S_{ij}
Sij。
S
12
=
S
12
m
−
S
13
m
S
32
m
r
c
,
(62)
S_{12} = S_{12}^m - S_{13}^m S_{32}^m r_c, \tag{62}
S12=S12m−S13mS32mrc,(62)
S 13 = S 13 m − S 12 m S 23 m r b , (63) S_{13} = S_{13}^m - S_{12}^m S_{23}^m r_b, \tag{63} S13=S13m−S12mS23mrb,(63)
S 21 = S 21 m − S 23 m S 31 m r c , (64) S_{21} = S_{21}^m - S_{23}^m S_{31}^m r_c, \tag{64} S21=S21m−S23mS31mrc,(64)
S 31 = S 31 m − S 32 m S 12 m r a , (65) S_{31} = S_{31}^m - S_{32}^m S_{12}^m r_a, \tag{65} S31=S31m−S32mS12mra,(65)
S 23 = S 23 m − S 21 m S 13 m r b , (66) S_{23} = S_{23}^m - S_{21}^m S_{13}^m r_b, \tag{66} S23=S23m−S21mS13mrb,(66)
S
32
=
S
32
m
−
S
31
m
S
12
m
r
a
.
(67)
S_{32} = S_{32}^m - S_{31}^m S_{12}^m r_a. \tag{67}
S32=S32m−S31mS12mra.(67)
因此,此方法利用多次测量的
S
i
i
m
i
S_{ii}^{mi}
Siimi所得值以及各端口间的相互关系推导出最终反射系数
S
i
i
S_{ii}
Sii,充分利用了
m
m
m端口VNA测量
n
n
n端口器件时,因VNA端口不足而重复测量的数据。
同理:当使用4端口VNA测量7端口器件时:
S
11
=
1
6
(
S
11
m
1
+
S
11
m
2
+
S
11
m
3
+
S
11
m
4
+
S
11
m
5
+
S
11
m
6
−
S
17
m
S
71
m
r
g
−
S
16
m
S
61
m
r
f
−
S
15
m
S
51
m
r
e
−
S
14
m
S
41
m
r
d
−
S
13
m
S
31
m
r
c
−
S
12
m
S
21
m
r
b
)
,
(68)
S_{11} = \frac{1}{6} \left( S_{11}^{m1} + S_{11}^{m2} + S_{11}^{m3}+ S_{11}^{m4}+ S_{11}^{m5}+ S_{11}^{m6}- S_{17}^m S_{71}^m r_g - S_{16}^m S_{61}^m r_f - S_{15}^m S_{51}^m r_e - S_{14}^m S_{41}^m r_d- S_{13}^m S_{31}^m r_c - S_{12}^m S_{21}^m r_b \right), \tag{68}
S11=61(S11m1+S11m2+S11m3+S11m4+S11m5+S11m6−S17mS71mrg−S16mS61mrf−S15mS51mre−S14mS41mrd−S13mS31mrc−S12mS21mrb),(68)
S
12
=
S
12
m
−
S
13
m
S
32
m
r
c
−
S
14
m
S
42
m
r
d
−
S
15
m
S
52
m
r
e
−
S
16
m
S
62
m
r
f
−
S
17
m
S
72
m
r
g
(69)
S_{12} = S_{12}^m - S_{13}^m S_{32}^m r_c- S_{14}^m S_{42}^m r_d- S_{15}^m S_{52}^m r_e- S_{16}^m S_{62}^m r_f- S_{17}^m S_{72}^m r_g\tag{69}
S12=S12m−S13mS32mrc−S14mS42mrd−S15mS52mre−S16mS62mrf−S17mS72mrg(69)
所以使用4端口VNA测量7端口器件时,需要确保选取测量的对角线元素
S
i
i
m
S_{ii}^m
Siim能够重复测量6次:
(
b
1
b
2
b
3
b
4
b
5
b
6
b
7
)
=
(
S
11
S
12
S
13
S
14
S
15
S
16
S
17
S
21
S
22
S
23
S
24
S
25
S
26
S
27
S
31
S
32
S
33
S
34
S
35
S
36
S
37
S
41
S
42
S
43
S
44
S
45
S
46
S
47
S
51
S
52
S
53
S
54
S
55
S
56
S
57
S
61
S
62
S
63
S
64
S
65
S
66
S
67
S
71
S
72
S
73
S
74
S
75
S
76
S
77
)
(
a
1
a
2
a
3
a
4
a
5
a
6
a
7
)
(70)
\begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{pmatrix} =\begin{pmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} & S_{17} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} & S_{27} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} & S_{37} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} & S_{47} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} & S_{57} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} & S_{67} \\ S_{71} & S_{72} & S_{73} & S_{74} & S_{75} & S_{76} & S_{77} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix}\tag{70}
b1b2b3b4b5b6b7
=
S11S21S31S41S51S61S71S12S22S32S42S52S62S72S13S23S33S43S53S63S73S14S24S34S44S54S64S74S15S25S35S45S55S65S75S16S26S36S46S56S66S76S17S27S37S47S57S67S77
a1a2a3a4a5a6a7
(70)
补充:信号流图
计算方法:
例子:
根据图示可知此器件信号只能从2->5,5->3, 所以:
(
b
2
b
3
b
5
)
=
(
S
22
S
23
S
25
S
32
S
33
S
35
S
52
S
53
S
55
)
(
a
2
a
3
a
5
)
(1)
\begin{pmatrix} b_2 \\ b_3 \\ b_5 \end{pmatrix}= \begin{pmatrix} S_{22} & S_{23} & S_{25} \\ S_{32} & S_{33} & S_{35} \\ S_{52} & S_{53} & S_{55} \end{pmatrix} \begin{pmatrix} a_2 \\ a_3 \\ a_5 \end{pmatrix} \tag{1}
b2b3b5
=
S22S32S52S23S33S53S25S35S55
a2a3a5
(1)
S
23
S_{23}
S23,
S
32
S_{32}
S32,
S
35
S_{35}
S35,
S
53
=
0
S_{53}=0
S53=0
根据图示及所提供S matrix可画出如下信号流图: