Multiplication Table 【二分】

本文探讨了一个有趣的问题:如何在一个n×m的乘法表中找到第K大的数。通过采用二分搜索策略,我们能够高效地解决这个问题。文章详细介绍了算法的实现过程,并提供了一段清晰的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multiplication Table
Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Bizon the Champion isn't just charming, he also is very smart.

While some of us were learning the multiplication table, Bizon the Champion had fun in his own manner. Bizon the Champion painted an n × m multiplication table, where the element on the intersection of the i-th row and j-th column equals i·j (the rows and columns of the table are numbered starting from 1). Then he was asked: what number in the table is the k-th largest number? Bizon the Champion always answered correctly and immediately. Can you repeat his success?

Consider the given multiplication table. If you write out all n·m numbers from the table in the non-decreasing order, then the k-th number you write out is called the k-th largest number.

Input

The single line contains integers nm and k (1 ≤ n, m ≤ 5·105; 1 ≤ k ≤ n·m).

Output

Print the k-th largest number in a n × m multiplication table.

Sample Input

Input
2 2 2
Output
2
Input
2 3 4
Output
3
Input
1 10 5
Output
5

Hint

2 × 3 multiplication table looks like this:

1 2 3

2 4 6

思路:对乘法表中元素进行二分,二分的条件是对每一个mid求出每一行比它小的个数和然后与k比较;

代码:

#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
using namespace std;
long long n,m,k;
bool judge(long long mid)
{
	long long sum=0;
	for(long long i=1;i<=n;i++)
	{
		sum=sum+min(m,mid/i);
	}
	return sum>=k;
}
int main()
{
	while(scanf("%lld%lld%lld",&n,&m,&k)!=EOF)
	{
		long long ans=0;
		long long l=1,r=n*m;
		while(l<=r)
		{
			long long mid=(l+r)/2;
			if(judge(mid))
			{
				ans=mid;
				r=mid-1;
			}
			else
			{
				l=mid+1;
			}
		}
		printf("%lld\n",ans);
	}
	return 0;
 } 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值