Multiplication Table

本文介绍了一种算法,用于在一个给定的n×m乘法表中找出第k大的数。该算法通过二分查找的方法高效地解决了问题,并提供了一个具体的实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multiplication Table
Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Bizon the Champion isn't just charming, he also is very smart.

While some of us were learning the multiplication table, Bizon the Champion had fun in his own manner. Bizon the Champion painted ann × m multiplication table, where the element on the intersection of the i-th row and j-th column equals i·j (the rows and columns of the table are numbered starting from 1). Then he was asked: what number in the table is the k-th largest number? Bizon the Champion always answered correctly and immediately. Can you repeat his success?

Consider the given multiplication table. If you write out all n·m numbers from the table in the non-decreasing order, then the k-th number you write out is called the k-th largest number.

Input

The single line contains integers nm and k(1 ≤ n, m ≤ 5·105; 1 ≤ k ≤ n·m).

Output

Print the k-th largest number in a n × m multiplication table.

Sample Input

Input
2 2 2
Output
2
Input
2 3 4
Output
3
Input
1 10 5
Output
5

Hint

2 × 3 multiplication table looks like this:

1 2 3
2 4 6
#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
__int64 n,m,k;
bool judge(__int64 mid)
{
	__int64 ans=0;
	__int64 i;
	for(i=1;i<=n;i++)
	ans+=min(m,mid/i);
	if(ans>=k)
	return 1;
	else
	return 0;
}
int main()
{
	__int64 i,ans;
	while(~scanf("%I64d%I64d%I64d",&n,&m,&k))
	{
		__int64 l=0;
		__int64 r=n*m;
		while(l<=r)
		{
			__int64 mid=(r+l)/2;
			if(judge(mid))
			{
			    ans=mid;
				r=mid-1;
			}
			else
			l=mid+1;
		}
		printf("%I64d\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值