求{k(n+3)=k(n)+k(n+1)+k(n+2)k(1)=k(2)=k(3)=1的通项公式k(n)。
RSolve[{k[n+3]==k[n+2]+k[n+1]+k[n],k[1]==k[2]==k[3]==1},k[n],n]
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪a=13(1+19−333−−√−−−−−−−−−√3+19+333−−√−−−−−−−−−√3)b=13−16(1+i3√)19−333−−√−−−−−−−−−√3−16(1−i3√)19+333−−√−−−−−−−−−√3c=13−16(1−i3√)19−333−−√−−−−−−−−−√3−16(1+i3√)19+333−−√−−−−−−−−−√3d=−13−166(1+i3√)847−3333−−√−−−−−−−−−−√3−(1−i3√)77+333−−√−−−−−−−−−√36 112/3e=−13−166(1−i3√)847−3333−−√−−−−−−−−−−√3−(1+i3√)77+333−−√−−−−−−−−−√36 112/3f=133(−11+847−3333−−√−−−−−−−−−−√3+11(77+333−−√)−−−−−−−−−−−−√3)k(n)=andn+bnfn+cnen