tensorboard 例子

这篇博客展示了如何利用TensorFlow库构建一个简单的神经网络,并通过TensorBoard进行可视化。首先定义了一个添加层的函数,然后创建了输入层、隐藏层和输出层。接着,设置了损失函数和梯度下降优化器进行训练。最后,通过运行TensorBoard在Ubuntu上查看网络结构和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf

def add_layer(inputs,in_size,out_size,activation_function=None):
with tf.name_scope(‘layer’):
with tf.name_scope(‘Weights’):
Weights= tf.Variable(tf.random_normal([in_size, out_size]),name=‘W’)
with tf.name_scope(‘biases’):
biases = tf.Variable(tf.zeros([1,out_size])+0.1,name=‘b’)
with tf.name_scope(‘Wx_plus_b’):
Wx_plus_b=tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs

with tf.name_scope(‘input’): #输入层大框架
xs = tf.placeholder(tf.float32,[None,1],name=‘x_input’)
ys = tf.placeholder(tf.float32,[None,1],name=‘y_input’)

l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,activation_function=None)

with tf.name_scope(‘loss’):
loss =tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
with tf.name_scope(‘train’):
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess =tf.Session()
writer=tf.summary.FileWriter(“logs/”,sess.graph)
sess.run(tf.initialize_all_variables())

重新打开terminal(在logs所在的文件夹下),输入命令tensorboard --logdir=logs
生成:TensorBoard 1.9.0 at http://ubuntu:6006 (Press CTRL+C to quit)
在谷歌浏览器中打开:http://ubuntu:6006,可以看到对应的tensorflow网络框架图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值