https://tensorflow.google.cn/tensorboard?hl=zh-cn
TensorBoard 提供机器学习实验所需的可视化功能和工具:
跟踪和可视化损失及准确率等指标
可视化模型图(操作和层)
查看权重、偏差或其他张量随时间变化的直方图
将嵌入投射到较低的维度空间
显示图片、文字和音频数据
剖析 TensorFlow 程序
以及更多功能
TensorBoard是一个独立的包(不是pytorch中的),这个包的作用就是可视化您模型中的各种参数和结果。
代码附上:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
max_steps = 1000
learning_rate = 0.001
dropout = 0.9
data_dir = './MNIST_data_bak'
log_dir = './logs/mnist_with_summaries'
mnist = input_data.read_data_sets(data_dir, one_hot=True)
sess = tf.InteractiveSession()
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
with tf.name_scope('input_reshape'):
# 784维度变形为图片保持到节点
# -1 代表进来的图片的数量、28,28是图片的高和宽,1是图片的颜色通道
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)
# 定义神经网络的初始化方法
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 定义Variable变量的数据汇总函数,我们计算出变量的mean、stddev、max、min
# 对这些标量数据使用tf.summary.scalar进行记录和汇总
# 使用tf.summary.histogram直接记录变量var的直方图数据
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
# 设计一个MLP多层神经网络来训练数据
# 在每一层中都对模型数据进行汇总
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = weight_variable([input_dim, output_dim])
variable_summaries(weights)
with tf.name_scope('biases'):
biases = bias_variable([output_dim])
variable_summaries(biases)
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram('pre_activations', preactivate)
activations = act(preactivate, name='activation')
tf.summary.histogram('activations', activations)
return activations
# 我们使用刚刚定义的函数创建一层神经网络,输入维度是图片的尺寸784=28*28
# 输出的维度是隐藏节点数500,再创建一个Dropout层,并使用tf.summary.scalar记录keep_prob
# 然后使用nn_layer定义神经网络输出层,其输入维度为上一层隐含节点数500,输出维度为类别数10
# 同时激活函数为全等映射identity,暂时不使用softmax
hidden1 = nn_layer(x, 784, 500, 'layer1')
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probability', keep_prob)
dropped = tf.nn.dropout(hidden1, keep_prob)
y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
# 使用tf.nn.softmax_cross_entropy_with_logits()对前面的输出层的结果进行Softmax
# 处理并计算交叉熵损失cross_entropy,计算平均的损失,使用tf.summary.scalar进行统计汇总
with tf.name_scope('cross_entropy'):
diff = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)
with tf.name_scope('total'):
cross_entropy = tf.reduce_mean(diff)
tf.summary.scalar('cross_entropy', cross_entropy)
# 下面使用Adam优化器对损失进行优化,同时统计预测正确的样本数并计算正确率accuracy,汇总
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
# 因为我们之前定义了太多的tf.summary汇总操作,逐一执行这些操作太麻烦,
# 使用tf.summary.merge_all()直接获取所有汇总操作,以便后面执行
merged = tf.summary.merge_all()
# 定义两个tf.summary.FileWriter文件记录器再不同的子目录,分别用来存储训练和测试的日志数据
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(log_dir + '/test')
# 同时,将Session计算图sess.graph加入训练过程,这样再TensorBoard的GRAPHS窗口中就能展示
# 整个计算图的可视化效果,最后初始化全部变量
tf.global_variables_initializer().run()
# 定义feed_dict函数,如果是训练,需要设置dropout,如果是测试,keep_prob设置为1
def feed_dict(train):
if train:
xs, ys = mnist.train.next_batch(100)
k = dropout
else:
xs, ys = mnist.test.images, mnist.test.labels
k = 1.0
return {x: xs, y_: ys, keep_prob: k}
# 执行训练、测试、日志记录操作
# 创建模型的保存器
saver = tf.train.Saver()
for i in range(max_steps):
if i % 10 == 0:
summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
test_writer.add_summary(summary, i)
print('Accuracy at step %s: %s' % (i, acc))
else:
if i % 100 == 99:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
train_writer.add_summary(summary, 1)
saver.save(sess, log_dir + 'model.ckpt', i)
print('Adding run metadata for', i)
else:
summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
train_writer.add_summary(summary, i)
train_writer.close()
test_writer.close()
训练过程
高级使用操作
个人觉得,还是需要自学,或者是有一个引路人大佬,不然上手过程还有后续的处理比较麻烦。
TensorBoard可视化工具简单教程参考
https://blog.youkuaiyun.com/qq_41573860/article/details/106674370
远程tensorboard
由于条件所限,通常在进行深度学习时都是在远处的服务器上进行训练的,利用SSH的方向隧道技术,将服务器上的端口数据转发到本地对应的端口,然后就能在本地方法服务器上的日志数据了。
参考:https://blog.youkuaiyun.com/zhaokx3/article/details/70994350