代码
import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
with tf.name_scope("layer"):
with tf.name_scope("weight"):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
with tf.name_scope("biases"):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
with tf.name_scope("Wx_plus_b"):
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
with tf.name_scope("input"):
xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
ys = tf.placeholder(tf.float32, [None, 1], name='y_input')
layer1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(layer1, 10, 1, activation_function = None)
with tf.name_scope("loss"):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
with tf.name_scope("train"):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
sess = tf.Session()
writer = tf.summary.FileWriter("logs/", sess.graph)
init = tf.global_variables_initializer()
sess.run(init)
命令
tensorboard --logdir=logs
效果
