字典树分析

本文深入解析字典树(Tire树)的基本概念、性质及应用场景,对比哈希树,阐述其构建过程、查找方法和遍历方式。同时,提供代码示例说明如何实现字典树的插入、查找和计算前缀数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基本概念

 

字典树,也称为单词查找树,Tire树,是一种树形结构,哈希树的变种。

2、基本性质

(1)根结点不包含字符,除根结点外的每个子节点都含一个字符。

(2)从根结点到某一结点。路径上经过的字符连接起来,就是该结点对应的字符串。

(3)每个结点的所有子节点包含的字符都不相同。

3、应用场景

典型应用是用于统计,排序和保存大量的字符串(不仅限于字符串),经常被搜索引擎系统用于文本词频统计。

4、优点

利用字符串的公共前缀来减少查询时间,最大限度的减少无谓的字符串比较,查询效率比哈希树高。

构建过程:

1、字典树结点定义

class TrieNode // 字典树节点
    {
        private int num;// 有多少单词通过这个节点,即由根至该节点组成的字符串模式出现的次数
        private TrieNode[] son;// 所有的儿子节点
        private boolean isEnd;// 是不是最后一个节点
        private char val;// 节点的值

        TrieNode()
        {
            num = 1;
            son = new TrieNode[SIZE];
            isEnd = false;
        }
    }

2、字典树构造函数

 Trie() // 初始化字典树
    {
        root = new TrieNode();
    }

3、建立字典树

// 建立字典树
    public void insert(String str) // 在字典树中插入一个单词
    {
        if (str == null || str.length() == 0)
        {
            return;
        }
        TrieNode node = root;
        char[] letters = str.toCharArray();//将目标单词转换为字符数组
        for (int i = 0, len = str.length(); i < len; i++)
        {
            int pos = letters[i] - 'a';
            if (node.son[pos] == null)  //如果当前节点的儿子节点中没有该字符,则构建一个TrieNode并复值该字符
            {
                node.son[pos] = new TrieNode();
                node.son[pos].val = letters[i];
            } 
            else   //如果已经存在,则将由根至该儿子节点组成的字符串模式出现的次数+1
            {
                node.son[pos].num++;
            }
            node = node.son[pos];
        }
        node.isEnd = true;
    }

4、在字典树中查找是否完全匹配一个指定的字符串

// 在字典树中查找一个完全匹配的单词.
    public boolean has(String str)
    {
        if(str==null||str.length()==0)
        {
            return false;
        }
        TrieNode node=root;
        char[]letters=str.toCharArray();
        for(int i=0,len=str.length(); i<len; i++)
        {
            int pos=letters[i]-'a';
            if(node.son[pos]!=null)
            {
                node=node.son[pos];
            }
            else
            {
                return false;
            }
        }
        //走到这一步,表明可能完全匹配,也可能部分匹配,如果最后一个字符节点为末端节点,则是完全匹配,否则是部分匹配
        return node.isEnd;
    }

5、前序遍历字典树

public void preTraverse(TrieNode node)
    {
        if(node!=null)
        {
            System.out.print(node.val+"-");
            for(TrieNode child:node.son)
            {
                preTraverse(child);
            }
        }
    }

6、计算单词前缀的数量

// 计算单词前缀的数量
    public int countPrefix(String prefix)
    {
        if(prefix==null||prefix.length()==0)
        {
            return-1;
        }
        TrieNode node=root;
        char[]letters=prefix.toCharArray();
        for(int i=0,len=prefix.length(); i<len; i++)
        {
            int pos=letters[i]-'a';
            if(node.son[pos]==null)
            {
                return 0;
            }
            else
            {
                node=node.son[pos];
            }
        }
        return node.num;
    }

简单的应用:

(问题1)现在有一个英文字典(每个单词都是由小写的a-z组成),单词量很大,而且还有很多重复的单词。

请你选择合适的数据结构,将所有的英文单词生成一个字典Dictionary?

(问题2)有一些Document,每个Document包含一些英语单词。

给定一个单词,判断这个单词是否在字典Dictionary中,如果在单词库中,输出这个单词出现总共出现的次数,否则输出NO?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值