CodeForces 235A LCM Challenge

本文探讨了如何从1到n中选择三个整数,使这三个整数的最小公倍数(LCM)达到最大值的问题。通过寻找互质数并使用辗转相除法计算最大LCM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:从1到n中找三个数使得它们的LCM最大,输出这个LCM

思路:显然是从1到n找三个互质的数相乘,而且他们的区间不会太大

#include<bits/stdc++.h>
using namespace std;

long long gcd(long long a,long long b)
{
    if(b==0)return a;
    return gcd(b,a%b);
}
int k = 100;
long long solve(long long a,long long b,long long c)
{
    long long tmp = a*b/gcd(a,b);
    tmp = tmp*c/gcd(tmp,c);
    return tmp;
}
int main()
{
    long long ans = 0;
    int n;
    scanf("%d",&n);
    for(int i=n;i>=n-k&&i>=1;i--)
        for(int j=n;j>=n-k&&j>=1;j--)
            for(int t=n;t>=n-k&&t>=1;t--)
                ans=max(ans,solve(i,j,t));
    cout<<ans<<endl;
}

Description
Some days ago, I learned the concept of LCM (least common multiple). I’ve played with it for several times and I want to make a big number with it.

But I also don’t want to use many numbers, so I’ll choose three positive integers (they don’t have to be distinct) which are not greater than n. Can you help me to find the maximum possible least common multiple of these three integers?

Input
The first line contains an integer n (1 ≤ n ≤ 106) — the n mentioned in the statement.

Output
Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than n.

Sample Input
Input
9
Output
504
Input
7
Output
210
Hint
The least common multiple of some positive integers is the least positive integer which is multiple for each of them.

The result may become very large, 32-bit integer won’t be enough. So using 64-bit integers is recommended.

For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值