「日常训练」 Longest Run on a Snowboard (UVA-10285)

本文介绍了一种解决二维最长递增子序列(LIS)问题的方法。通过动态规划求解从每个点出发的最长递增路径长度,并利用递归辅助解决。代码中详细展示了算法实现过程及核心函数。

题意

其实就一条二维的LIS,但是还是做的一愣一愣的,多努力。
考虑dp[i][j]dp[i][j]为从(i,j)出发的二维LIS的最大值,那么dp[i][j]=max{dp[idi[k]][jdj[k]]+1}dp[i][j]=max{dp[i−di[k]][j−dj[k]]+1},取dp值时要求严格递减。否则值为1。

分析

#include <bits/stdc++.h>
#define MP make_pair
#define PB push_back
#define fi first
#define se second
#define ZERO(x) memset((x), 0, sizeof(x))
#define ALL(x) (x).begin(),(x).end()
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
#define per(i, a, b) for (int i = (a); i >= (b); --i)
#define QUICKIO                  \
    ios::sync_with_stdio(false); \
    cin.tie(0);                  \
    cout.tie(0);
using namespace std;
using ll = long long;
using ull = unsigned long long;
using pi = pair<int, int>;
using pii = pair<int, pi>;

template<typename T>
T
read()
{
    T tmp; cin>>tmp;
    return tmp;
}

int arr[105][105],dp[105][105],n,m;
const int dx[]={0,1,0,-1},
          dy[]={1,0,-1,0};

int
solve(int x,int y)
{
    //cout<<x<<" "<<y<<endl;
    if(dp[x][y]!=-1) return dp[x][y];
    else
    {
        int tmpans=1;
        rep(i,0,3)
        {
            int tx=x+dx[i],
                ty=y+dy[i];
            if(tx>=1 && tx<=n && ty>=1 && ty<=m
            && arr[tx][ty]<arr[x][y])
            {
                tmpans=max(tmpans,solve(tx,ty)+1);
            }
        }
        return dp[x][y]=tmpans;
    }
}

int
main()
{
    int T; cin>>T;
    while(T--)
    {
        string p; cin>>p>>n>>m;
        rep(i, 1, n)
            rep(j, 1, m)
                { cin>>arr[i][j]; }
        memset(dp,-1,sizeof(dp));
        int ans=-1;
        rep(i, 1, n)
            rep(j, 1, m)
            {
                if(dp[i][j]==-1)
                    dp[i][j]=solve(i,j);
                ans=max(ans,dp[i][j]);
            }
        cout<<p<<": "<<ans<<endl;

    }
    return 0;
}
As an AI language model, I cannot provide you with the exact solution you need without further details. However, here is a general approach to find the longest distance in a binary tree using Python: 1. Define a class for a binary tree node with attributes for the node value, left child, and right child. 2. Define a function that recursively traverses the binary tree and returns the height of the tree starting from a given node. 3. Define a function that recursively traverses the binary tree and returns the longest distance between two nodes in the tree. 4. In the function defined in step 3, for each node, calculate the longest distance that passes through that node and update the maximum distance seen so far. 5. Call the function defined in step 3 starting from the root node of the binary tree. Here is a sample implementation of the above approach: ``` class Node: def __init__(self, value): self.value = value self.left = None self.right = None def height(root): if root is None: return 0 return 1 + max(height(root.left), height(root.right)) def longest_distance(root): if root is None: return 0 left_height = height(root.left) right_height = height(root.right) left_distance = longest_distance(root.left) right_distance = longest_distance(root.right) return max(left_height + right_height, max(left_distance, right_distance)) root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) print(longest_distance(root)) ``` This code will output the longest distance between any two nodes in the binary tree.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值