刚刚!YOLOv4重磅推出!

YoloV4在arxiv上发布最新版本,并同步更新了Github代码。该研究结合多种新特性如Weighted-Residual-Connections (WRC)、Cross-Stage-Partial-connections (CSP)等,在MSCOCO数据集上实现了43.5% AP的实时精度(~65FPS)。
部署运行你感兴趣的模型镜像

点上方蓝字Python人工智能与深度学习社区获取更多干货

在右上方 ··· 设为星标 ★,第一时间获取资源

刚刚YoloV4在arxiv更新了!

https://arxiv.org/abs/2004.10934v1

https://github.com/AlexeyAB/darknet

Github代码也更新了!

摘要:

There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy. Practical testing of combinations of such features on large datasets, and theoretical justification of the result, is required. Some features operate on certain models exclusively and for certain problems exclusively, or only for small-scale datasets; while some features, such as batch-normalization and residual-connections, are applicable to the majority of models, tasks, and datasets. We assume that such universal features include Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT) and Mish-activation. We use new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, CmBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP (65.7% AP50) for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100. 

不对论文解读了,以免有失偏颇,欢迎大家留言分享对此论文的点评!

大家对此论文有何看法?欢迎留言点评

---------♥---------

声明:本内容为学习笔记摘录

图片来源网络,不代表本公众号立场。如有侵权,联系删除

点个在看支持一下吧

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值