问题描述:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
动态规划描述:
设状态为(i,j),表示从位置(i,j)出发,路径的最小和,则状态转移方程为:
源代码
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
for(int i = triangle.size()-2; i>=0; --i){
for(int j=0; j<i+1; ++j){
triangle[i][j]+=min(triangle[i+1][j], triangle[i+1][j+1]);
}
}
return triangle[0][0];
}
};