题目大意是给定一个多边形,一条抛物线,求抛物线在多边形里面部分的长度的总和。
基本思想:对抛物线和多边形求交点,求出来交点之后判断那几段在多边形内,然后对那几段进行曲线积分,然后加和即可。
我的最初思想是求出来所有的交点之后,然后判断两个交点的中点是不是在多边形内,然后确定区间之后直接曲线积分,但是如果这么做的话,如果多边形的边在抛物线上面交错相交,时间复杂度为O(nn),稳稳地不可以,于是乎这道题被卡住了……
然后几何大神适牛大大放出了这道题的解题报告,我便去拜读了一下,发现不止姿势优美,而且非常好写,尤其是判断抛物线恰好落在多边形顶点上面的时候,那个交点是否选择,他的判断方法真的是神思想……详情参见适牛大大的解题报告
至于code……几乎是仿写了适牛的写法……TAT
(同时学会了自适应辛普森积分法……)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <vector>
using namespace std;
const double eps = 1e-8;
int dblcmp(double x){
if (fabs(x) < eps) return 0;
return x > eps ? 1 : -1;
}
const double pi = acos(-1.0);
inline double sqr(double x){
return x * x;
}
struct Point2D{
double x, y;
Point2D(){}
Point2D(double a, double b) : x(a), y(b){}
void input(){
scanf("%lf%lf", &x, &y);
}
void output(){
printf("%.2lf %.2lf", x, y);
}
friend Point2D operator + (const Point2D &a, const Point2D &b){
return Point2D(a.x + b.x, a.y + b.y);
}
friend Point2D operator - (const Point2D &a, const Point2D &b){
return Point2D(a.x - b.x, a.y - b.y);
}
friend bool operator == (const Point2D &a, const Point2D &b){
return dblcmp(a.x - b.x) == 0 && dblcmp(a.y - b.y) == 0;
}
friend Point2D operator * (const double &a, const Point2D &b){
return Point2D(a * b.x, a * b.y);
}
friend Point2D operator / (const Point2D &a, const double &b){
return Point2D(a.x / b, a.y / b);
}
double norm(){
return hypot(x, y);
}
Point2D trunc(double r){
double l = norm();
if (!dblcmp(l)) return *this;
r /= l;
return Point2D(x * r, y * r);
}
};
double det(const Point2D &a, const Point2D &b){
return a.x * b.y - a.y * b.x;
}
double dot(const Point2D &a, const Point2D &b){
return a.x * b.x + a.y * b.y;
}
double dist(const Point2D &a, const Point2D &b){
return (a - b).norm();
}
Point2D rotate_point(const Point2D &p, double A){
double tx = p.x, ty = p.y;
return Point2D(tx * cos(A) - ty * sin(A), tx * sin(A) + ty * cos(A));
}
double a, b, c, l, r;
double f0(double x){
return sqrt(1 + sqr(2 * a * x + b));
}
double adaptive_simpsons_aux(double (*f)(double), double a, double b,
double eps, double s, double fa, double fb, double fc, int depth){
double c = (a + b) / 2, h = b - a;
double d = (a + c) / 2, e = (c + b) / 2;
double fd = f(d), fe = f(e);
double sl = (fa + 4 * fd + fc) * h / 12;
double sr = (fc + 4 * fe + fb) * h / 12;
double s2 = sl + sr;
if (depth <= 0 || fabs(s2 - s) <= 15 * eps)
return s2 + (s2 - s) / 15;
return adaptive_simpsons_aux(f, a, c, eps / 2, sl, fa, fc, fd, depth - 1) +
adaptive_simpsons_aux(f, c, b, eps / 2, sr, fc, fb, fe, depth - 1);
}
double adaptive_simpsons(double (*f)(double), double a, double b, double eps, int depth){
double c = (a + b) / 2, h = b - a;
double fa = f(a), fb = f(b), fc = f(c);
double s = (fa + 4 * fc + fb) * h / 6;
return adaptive_simpsons_aux(f, a, b, eps, s, fa, fb, fc, depth);
}
double f(double x){
return a * x * x + b * x + c;
}
int n;
const int maxn = 2e4 + 10;
Point2D p[maxn];
vector<double> h;
bool inSeg(Point2D l, Point2D r, Point2D mid){
return dblcmp(mid.x - fmin(l.x, r.x)) >= 0
&& dblcmp(fmax(l.x, r.x) - mid.x) >= 0
&& dblcmp(mid.y - fmin(l.y, r.y)) >= 0
&& dblcmp(fmax(l.y, r.y) - mid.y) >= 0;
}
bool check(Point2D pre, Point2D now, Point2D nxt){
pre = pre - now;
nxt = nxt - now;
pre = pre.trunc(0.1);
nxt = nxt.trunc(0.1);
pre = pre + now;
nxt = nxt + now;
if (dblcmp(pre.y - f(pre.x)) * dblcmp(nxt.y - f(nxt.x)) < 0) return true;
return false;
}
void solve(){
scanf("%lf%lf%lf%lf%lf", &a, &b, &c, &l, &r);
for (int i = 0; i < n; i++)
p[i].input();
h.resize(0);
if (n <= 2){
puts("0.00");
return;
}
for (int i = 0; i < n; ++i){
Point2D now, pre, nxt, Inter, Inter2;
pre = p[(i + n - 1) % n];
now = p[i];
nxt = p[(i + 1) % n];
if (dblcmp(now.x - nxt.x) == 0){
Inter = Point2D(now.x, f(now.x));
if (inSeg(now, nxt, Inter)){
h.push_back(Inter.x);
if (Inter == now)
if (!check(pre, now, nxt))
h.push_back(Inter.x);
}
}else{
double kk = (nxt.y - now.y) / (nxt.x - now.x);
double bb = nxt.y - nxt.x * kk;
double A = sqr(b - kk) - 4.0 * (c - bb) * a;
if (dblcmp(A) > 0){
double x1 = (-(b - kk) + sqrt(A)) / 2.0 / a;
double x2 = (-(b - kk) - sqrt(A)) / 2.0 / a;
Inter = Point2D(x1, f(x1));
Inter2 = Point2D(x2, f(x2));
if (inSeg(now, nxt, Inter)){
if (!(Inter == pre) && !(Inter == nxt)) h.push_back(Inter.x);
if (Inter == now && !check(pre, now, nxt)) h.push_back(Inter.x);
}
if (inSeg(now, nxt, Inter2)){
if (!(Inter2 == pre) && !(Inter2 == nxt)) h.push_back(Inter2.x);
if (Inter2 == now && !check(pre, now, nxt)) h.push_back(Inter2.x);
}
}
}
}
sort(h.begin(), h.end());
double ans = 0;
for (int i = 0; i + 1 < h.size(); i += 2){
double L = fmax(l, h[i]), R = fmin(r, h[i + 1]);
if (dblcmp(R - L) > 0)
ans += adaptive_simpsons(f0, L, R, eps, 10);
if (dblcmp(R - L) < 0) break;
}
double out = ans;
printf("%.2lf\n", out + eps);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "rt", stdin);
#endif
while(scanf("%d", &n) == 1)
solve();
return 0;
}