HDU6055 Regular polygon(思路)

本文介绍了一个算法问题,即如何计算平面上给定点集可以构成的不同正多边形的数量。通过输入一系列整数坐标点,程序将输出这些点能够组成的正多边形数目。文中提供了一段示例代码,该代码主要针对正方形的情况进行计算。

Regular polygon

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 111    Accepted Submission(s): 40


Problem Description
On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
 

Input
The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
 

Output
For each case, output a number means how many different regular polygon these points can make.
 

Sample Input
4 0 0 0 1 1 0 1 1 6 0 0 0 1 1 0 1 1 2 0 2 1
 

Sample Output
1 2
 

Source

由于给出的点都是整数而且要组合成正多边形,只可能组合出正方形,接下来枚举正方形就行了

#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int N=505;
struct node
{
    int x,y;
}p[N];
bool vis[N][N];
int solve(node a,node b)
{
    int ans=0;
    int x=a.x-b.x;
    int y=a.y-b.y;
    if(a.x+y>=0&&a.y-x>=0&&b.x+y>=0&&b.y-x>=0&&vis[a.x+y][a.y-x]&&vis[b.x+y][b.y-x])
    ans++;
    if(a.x-y>=0&&a.y+x>=0&&b.x-y>=0&&b.y+x>=0&&vis[a.x-y][a.y+x]&&vis[b.x-y][b.y+x])
    ans++;
    return ans;
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        mem(vis,false);
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&p[i].x,&p[i].y);
            p[i].x+=200;
            p[i].y+=200;
            vis[p[i].x][p[i].y]=true;
        }
        int ans=0;
        for(int i=0;i<n;i++)
        {
            for(int j=i+1;j<n;j++)
            {
                ans+=solve(p[i],p[j]);
            }
        }
       printf("%d\n",ans/4);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值