毫米波点云生成论文 阅读笔记 | 3D Point Cloud Generation with Millimeter-Wave Radar

本文介绍了毫米波雷达用于3D点云生成的创新方法——MilliPoint,通过结合SAR技术克服了分辨率低和镜面反射问题。研究提出自我交叉范围跟踪和多焦点算法,实现对车辆雷达的SAR功能,生成密集高分辨率的点云。实验表明,MilliPoint在不同场景下能生成最密集且准确对齐的点云。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

毫米波点云生成论文 | 3D Point Cloud Generation with Millimeter-Wave Radar

Kun Qian, Zhaoyuan He, Xinyu Zhang
UCSD
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (ACM IMWUT)

原始论文地址: http://xyzhang.ucsd.edu/papers/KQian_UbiComp21_RadarPointCloud.pdf
Video地址:ACM SIGCHI官方频道

本文为毫米波点云生成论文 3D Point Cloud Generation with Millimeter-Wave Radar的阅读笔记, 原载于R.X. NLOS的博客
大量参考了作者的 Pre-recorded presentations for UbiComp/ISWC 2021, September 21–26
笔记难免存在问题,欢迎联系 981591477@qq.com 指正。


内容在优快云、知乎和微信公众号同步更新

在这里插入图片描述



1 Introduction

  • Sensors for Automomous Driving
    • Lidar, Camera and Radar
    • Radar is more robust against bad weathers
  • Limitations of MmWave Radar (2 main drawbacks)
    • Extremely low resolution

      ❌ due to its small form factor

      ❌ only generates intensity maps with strong reflection peaks

    • Blindness due to specular reflection

      ❌ specularly reflected by most objects

Extremely low resolution

Blindness due to specular reflection

  • An Existing Solution: Non-coherent Imaging
    • Fusing measurements along the Radar’s moving trajectory

      ✅ To some extent, alleviate the specular reflection problem (by illuminating from diverse locations)

      ❌ The imaging resolution is still limited by the physical size of the antenna array

      ❌ Cannot be fundamentally improved through spatial sampling

picture 4

  • MilliPoint: Coherent Imaging
    • Raw radar measurements are directly combined with SAR

      ✅ low-end vehicle radars

      ✅ coherently combines measurements of the radar

      ✅ generate dense and high-resolution 3D point clouds

2 困难和解决方法

  • Enabling SAR with Vehicle Radar

  • Challenge 1: SAR requires accurate tracking of the radar
    • 左图:uniform motion (位置已知)
    • 右图: Variable motion (位置未知)、
    • 结论: Without the knowledage of the radar’s location, the image of the object can be highly distorted

picture 5

  • Solution: a self cross-range tracking method
    • Radar Speed = Cross Range Movement / Elapsed Time

    • Observation: Different Tx-Rx pairs experience similar channel responses while moving along the cross-range

      ▪ The radar has equally spaced 4 antennas

      ▪ As the radar moves, the 1st antenna pair at time t 1 t_1 t1 coincides with the 2nd antenna pair at time t 0 t_0 t0

      🚩 ⇒ \Rightarrow pair 1和 pair 2接收的信号很接近,只有一个 t 0 − t 1 t_0 - t_1 t0t1的时延 ⇒ \Rightarrow 由测量信号可获得 t 0 − t 1 t_0 - t_1 t0t1

      ▪ 同时,the radar moves by one antenna spacing ⇒ \Rightarrow 可获得距离 (cross-range movement)

      ▪ so the speed of the radar can be calculated

picture 6


  • Overcoming Specular Reflection in SAR

  • Challenge 2: SAR requires focusing on the center of the target

    • 下图:the scenario where a metal surface is 3m away and 沿cross-range方向 135 ∘ ^\circ incident angle
    • 左图:SAR focuses on the broadside direction, then the target disappears
    • 右图:only when the SAR focuses on the direction of 4 5 ∘ 45^\circ 45, the target is imaged

picture 7

  • Solution:
    • root cause of this phenomenon:

      🚩 the mismatch of the physical aperture of the radar and the effective apertures of the targets

      🚩 The physical aperture: the physical trajectory of the radar (图中blue segment)

      🚩 The effective aperture of a target is the segment of the trajectory where the target’s reflection is received ⇒ \Rightarrow Due to specular reflection, the effective aperture is the projection (图中short red segment)

    • The focusing center can be represented by the parameters l l l and θ \theta θ

      ✅ can be identified in the spatial frequency spectrum

      ⇒ \Rightarrow 从而propose the multi-focusing algorithm to overcome the specular reflection problem and image all objects in the environment

      ⇒ \Rightarrow image all objects in the environment

picture 8


  • 3D Point Cloud Generation from SAR
  • Challenge 3: SAR only generates 2D intensity maps
    • 下图展示了an indoor scenario
    • images of objects at different heights overlap with each other

picture 9

  • Solution:
    • Combining co-registered pixels of the SAR images generated by different antenna pairs to estimate the height of target scatter point

      ✅ exploit multiple antenna pairs along the vertical direction

      ✅ For each antenna pair, we generate one SAR image and find pixels with high intensity

      ✅ Complex pixel values still encode the elevation information ⇒ \Rightarrow So we combine the co-registered pixels of all SAR images to form a virtual pixel array and estimate the elevation of the pixels (如下图)

picture 10

  • 点云生成结果

picture 11

3 实验与结果

  • Experiment
    • using a TI cascade radar with 6 transmit antennas and 8 receive antennas
    • Ground Truth: captured by a ZED stereo camera

picture 12

  • Results
    • Compare MilliPoint with non-coherent imaging and the imaging with a static radar
    • In different scenarios with different objects such as cars, pedestrians, bikes and trash bins, MilliPoint generates the densest point cloud s and the points 实现了accurately aligned

总结

  • 理论方面 :Propose MilliPoint

    • The first step to enable 高分辨高密度 3D point cloud generation on low-end vehicle Radar based on SAR

    • 关键挑战:

      🚩 Self corss-range tracking

      🚩 Automatic multi-focusing

      🚩 3D pointcloud generation

  • 实验方面 :implement and verify the design on an automative radar, and conduct case studies in realstic driving scenes

  • 更多 :envision MilliPoint as a new type of sensor fusion modality

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不再更新,请勿购买!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值