An improved deep learning model for soybeanfuture price prediction with hybrid datapreprocessing

#「鸿蒙心迹」“2025・领航者闯关记“主题征文活动#

主要贡献:

  1. 提出了一套二阶段混合数据预处理 + 深度预测的流水线(ICEEMDAN → LZC→ BVMD → DELM + SSA 优化)。

  2. Lempel-Ziv 复杂度(LZC) 识别高频子序列并重构,聚焦“难预测”的高频信息以便二次分解处理。

  3. 提出用 Beluga Whale Optimization(BWO) 优化 VMD 参数(K, α),即论文所称的 BVMD,提高二次分解稳定性与保真度。

  4. 使用 Sparrow Search Algorithm(SSA) 优化深度极限学习机(DELM)超参数/输入权重,作为预测器优化手段。实验在中国、意大利、美国三组数据上显示出显著精度提升(文中给出MAPE/R²等指标)。

代码复现:

# Repository: ICEEMDAN-LZC-BVMD-SSA-
Autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems. By generating additional training data through data augmentation, the performance of deep learning models can be greatly improved. This is particularly important in wireless communication systems, where the availability of large amounts of labeled data is often limited. Autoencoder-based data augmentation techniques can be used to generate synthetic data that is similar to the real-world data. This can help to address the problem of overfitting, where the deep learning model becomes too specialized to the training data and performs poorly on new, unseen data. By increasing the diversity of the training data, the deep learning model is better able to generalize to new data and improve its performance. Furthermore, autoencoder-based data augmentation can also be used to improve the robustness of deep learning models to channel variations and noise. By generating synthetic data that simulates different channel conditions and noise levels, the deep learning model can be trained to be more resilient to these factors. This can result in improved performance in real-world wireless communication scenarios, where channel conditions and noise levels can vary widely. In conclusion, autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems by improving the performance and robustness of deep learning models.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员奇奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值