决策树示例和可视化
- 决策树的深度默认延申将数据划分开为止,但是深度有时太大时,对预测分数并没有帮助。此时就需要对树进行剪枝,使其深度合适。
- 代码示例:
# 导包
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np
# 加载数据
data=datasets.load_iris()
X=data['data']
y=data['target']
feature_names=data['feature_names']