本文从系统工程视角剖析AI Agent开发的复杂性,指出框架虽降低门槛但未消除复杂性,只是将其转移。Agent开发需关注可运行、可复现、可进化三层挑战,智能不确定性需工程确定性支撑。文章强调Agent开发需从"能跑"到"能用",建立系统化方法,包括状态管理、版本控制、监控测试等,才能真正实现稳定可靠的生产级Agent系统。

阿里妹导读
当我们将所有希望寄托于大模型的「智能」时,却忘记了智能的不确定性必须以工程的确定性为支撑。一个无法复现、无法调试、无法观测的智能,更像是一场精彩但失控的魔法,而非我们真正需要的、可靠的生产力。本文尝试从系统工程的视角剖析 Agent 系统在可运行、可复现与可进化三个层次上不断升级的问题以及复杂度。进一步认识到:框架/平台让 Agent 「好搭」但没有让它「好用」,真正的复杂性,从未被消除,只是被推迟。
一、引子:一种“简单”的错觉
团队最近常出现一种论调:“现在做 Agent 很简单,用 LangChain、百炼、Flowise 搭一搭就能跑。”
这句话乍一听确实无法反驳 —— 框架确实降低了门槛。但那种“简单”,更像是复杂性暂时被平台吸收后的假象。从技术层面看,Agent 开发涉及:
- 编排与任务规划;
- Context 与 Memory 管理;
- 领域知识融合(RAG);
- 以及业务逻辑的 agent 化。
这些环节并不是写几个 prompt 就能搞定的。 当开发者觉得“简单”其实是因为——复杂性被平台吸收了。 Agent 之难,不在跑通 Demo,而在让它长期、稳定、可控地运行。
二、Agent 开发为何被误以为“简单”?
从表面看,我们站在了一个 AI 爆炸的年代,各种平台与工具层出不穷。确实写几个 prompt、拼几层链路,一个“能动”的 Agent 就诞生了。但这并不是复杂性消失的标志,而是——复杂性被转移了位置。
我把这层“简单”拆成三种幻觉:
2.1. 被封装的复杂性
框架帮你拼接 prompt、裁剪 context,让开发者远离细节,但调试、trace、状态恢复这些底层骨架,仍无人替你承担。
以 LangChain 为例,只需几行代码即可创建一个 “能回答问题” 的 Agent:
from langchain.agentsimport initialize_agent, load_tools
这段代码几乎隐藏了所有复杂性:
- prompt 拼装、调用链、上下文管理都在内部封装;
- 但若任务出错(如 API 限流、工具失败),Agent 默认并不会重试或记录 trace。
看似“简单运行”,实则丧失了可观测与调试的接口。
2.2. 被外包的复杂性
Memory、RAG、Embedding 全交由平台托管,代价是失去了干预与解释的能力。
在 LangChain 中,你可以快速添加“记忆”:
from langchain.memoryimportConversationBufferMemory
但这只是短期记忆缓冲,它不会处理:
- 旧信息冲突;
- 多轮状态漂移;
- 以及上下文过长导致的剪裁问题。
当 Agent 规模扩大,memory的一致性与状态清理反而成了新的系统复杂度。
2.3. 被推迟的复杂性
它不会消失,只会在运行阶段重新显现:
- 输出漂移
- 无法复现
- 正确性与稳定性塌陷
能跑起来并不等于能长期跑得对。所谓简单,其实是我们暂时不用面对复杂。
三、Agent 系统的三层复杂度

3.1. Agent复杂度
Agent 系统的复杂性体现在可运行、可复现、可进化。当下的 Agent 框架大多解决了「可运行性」,但「可复现性」与「可进化性」仍是系统工程难题。

在“可运行性”层面,以LangChain为代表的框架的抽象设计确实高效。但若要让 Agent 行为稳定、可解释、可持续优化,仍需额外引入日志系统、prompt 版本管理、feedback loop 等基础设施。
从系统工程角度看,Agent 的难点并非在“生成”而在“执行”。所有平台最终都会在这两条生命线上暴露代价。

在落地阶段,稳定性往往比正确性更关键。只有稳定性存在,正确性才有被验证和优化的可能性。
智能的不确定性必须以工程的确定性为支撑。稳定与可观测,是 Agent 真正可演化的前提。
3.2. Agent放大效应

如上图所示,同样的模型(qwen-max),同样的时间、同样的prompt,产生的结果缺不一样,这就是LLM的不确定性带给Agent的放大效应。相对于开发者最熟悉的传统软件系统的开发,Agent带来的复杂和难点就源于它被 LLM 的不确定性和语义层次的逐级放大了。假设一次LLM交互正确率为90%,一个Agent系统需要10次LLM的交互,那么这个Agent系统的正确率就只有35%,一个Agent系统需要20次LLM的交互,那么这个Agent系统的正确率只有12%。
Memory 的不确定性放大
相比传统软件的状态管理来说(是确定性的,例如数据库里有啥就是啥),Agent 的memory依赖 LLM 的解析、embedding、检索,结果高度不确定,所以memory不是存取问题而是语义一致性问题,这是 Agent 特有的。
编排的动态性放大
传统系统里编排(workflow/orchestration)是固定的流程,预定义好。Agent 里编排常常是 LLM 动态决定下一步调用哪个工具、如何调用。这意味着编排问题不仅是“顺序/并发”的问题,而是决策空间爆炸,导致测试、监控、优化都更复杂。
测试性的不可预测性放大
传统软件可预测:给定输入 → 预期输出。Agent 的输出是概率分布(LLM 输出 token 流),没有严格确定性。所以测试不能只用单元测试,而要引入回放测试、对比基线测试、模拟环境测试,这就远超普通应用测试的难度。
3.3. Agent从“能跑”到“能用”
又不是不能跑,要什么自行车?
有人说,Agent开发的时候我修改修改提示词也能达到目标,是否是我自己放大了问题并不是Agent放大了上面提到的不确定性。
“改改提示词就能跑通”,本质上其实在说:短期目标 + 容忍度高 = 足够好,而Agent系统的目标是:长期目标 + 工程级可靠性 = 难度激增。
先看看为什么改改prompt就能跑通,很多 Agent Demo 或 POC(Proof of Concept)目标是 一次性任务,比如“帮我写个总结”“调用下 API”,在这种低要求场景里,LLM 本身的强大能力掩盖了很多问题:
- Memory 可以只靠上下文传递(没真正测试过长时效);
- 编排可以写死流程或靠提示词 hint;
- 测试性无所谓,跑一次能对上答案就算赢;
是我放大了问题还是Agent系统放大了问题,因为当需求从 “Demo” → “持续可用系统” 时,问题会迅速被放大:
Prompt 修改 ≠ 可靠性保证,改提示词可能解决眼前 bug,但没有保证同类问题不会在别的 case 再次出现。你其实没有建立可复现、可维护的决策逻辑,只是调参式“玄学优化”。Prompt 修改 ≠ 可扩展性,在单任务 Agent 下,prompt hack 有效。但在多工具、多场景 Agent 里,prompt 的复杂度指数级增长,最终失控。Prompt 修改 ≠ 工程可控性,传统软件能写测试 case 保证逻辑覆盖,但是 prompt 只能部分缓解 LLM 的概率波动,没法做强保证。
所以最终需要更结构化的 memory、编排和测试手段 —— Agent系统化。
Agent框架的局限
以Langchain框架为例,看看框架能够解决Agent三层复杂度的问题。LangChain 提供了基础的 CallbackManager与 LangSmith 集成,用于追踪 Agent 的执行过程。这部分功能通常被忽略,却是理解「可复现性」与「可观测性」的关键。
from langchain.callbacks import StdOutCallbackHandler, CallbackManager
执行时,LangChain 会在终端输出每一次 思考(Thought) 与 动作(Action):
Thought: 我需要使用计算工具。
看似简单的输出,其实揭示了三个重要事实:
1. Agent 内部决策过程可追踪(这是复现性的前提);
2. CallbackManager 需要工程师主动启用(默认不会记录);
3. 观测粒度受限(无法直接追踪上下文裁剪、记忆覆盖等细节)。
LangSmith 提供了更完善的可视化 trace,但依然属于外部观测工具,Agent 框架本身仍未内建可验证机制。也就是说,框架给你“看”的能力,却不会替你“控”的问题。
虽然Langchain这样的框架已经有意思的在解决Agent系统中的复杂问题,但是不得不承认当前大部分工程维度仍然是未解决的(简言之,框架解决了“调用 LLM 做事”的问题,但没有解决“让 LLM 做事像系统那样可控、可持续、可扩展”的问题):


- ✅ 可运行性:普遍支持良好(开发门槛低)
- ⚙️ 可复现性:仅局部支持(需自建状态与观测层)
- ❌ 可进化性:仍靠人工与系统设计
LangChain 让 Agent “能搭”,却让系统失去了“能解释”的能力。复杂性并未消失,只是从代码层迁移到了运行时。
我们再来深入的分析一下运行时的复杂度,即Agent系统带来的新问题——它不仅要运行,还要「持续思考」,而思考的副作用就是不稳定性。这些复杂性不是「传统的代码复杂度」,而是「智能行为带来的系统不确定性」。它们让 Agent 工程更像在管理一个复杂适应系统 ,而非线性可控的软件。

Agent唯一解是系统化
-
问题规模放大后 Prompt Hack 失效,单一问题场景,改 prompt 就能跑通,但是当任务复杂度、场景数量增加,prompt 就会变得臃肿不可控(比如一个 prompt 里要塞几十条规则),就像写 SQL 时拼接字符串,开始能跑,最后一定注入 + 维护灾难。系统化帮助Agent结构化约束 + 自动化编排,而不是人肉调 prompt。
-
不确定性需要可控性,一次性跑出来成功就算赢,但是在生产环境必须 99% 正确(甚至100%),哪怕 1% 幻觉就会积累成灾难,例如像日志分析 Agent,错报/漏报一次可能导致线上事故没被发现。系统化通过测试、监控、回放验证,确保可控,而不是每次都赌运气。
-
知识沉淀 vs 重复踩坑,Agent今天改 prompt 能解决 bug,明天来了新需求又重新摸索。知识没有沉淀,Agent 不能记忆/复用,最终不断重复劳动。同事抱怨过一个业务系统的开发中prompt修改的commit占所有代码提交的三分之一以上,但是另一同事遇到同类问题想复用这个prompt发现完全无法迁移还要重新 hack。系统化就是通过
Memory + 知识库保证 Agent 能学到、积累下来,不是每次都重造轮子。
Prompt Hack/Demo Agent 能解决的是“小问题”,系统化 Agent 才能解决“扩展性、可靠性、沉淀”的问题。这些问题现在可能不明显,但随着使用时间和范围扩大,必然会爆发。
Demo Agent 确实能解决问题,但只能解决今天的问题,系统化 Agent 才能解决明天和后天的问题。

四、Agent从“聪明”到“可靠”
4.1. 一些真实Agent案例
以史为镜,可以知兴替;以人为镜,可以明得失,我在Agent系统开发过程中碰到的问题一定不止我一个人,我让ChatGPT帮我搜索了Reddit、GitHub、Blog中关于Agent开发的案例,想借助别人的案例来验证我自己的思考和反思是否一致:
玩具级 Agent 的典型失败
- Auto-GPT 社区多次反馈:循环、卡死、无法完结任务(早期最典型的“能跑但不可靠”),Auto-GPT seems nearly unusable[1]
- 开发者质疑“代理能否上生产”,实际尝试后指出多步任务中跳步/幻觉严重(仅靠系统 prompt+函数调用不行),Seriously, can LLM agents REALLY work in production?[2]
- OpenAI Realtime Agents 官方示例库 issue:即便是“简单 demo”,使用者也反馈幻觉过多,不具备非 demo 可用性,Lots of hallucinations?[3]
上生产后暴露的工程问题(不是改 Prompt 能解决)
- LangGraph 生产部署并发压力下“can’t start a new thread”(Celery 内多节点并行触发的资源/并发问题),Handling “RuntimeError: can’t start a new thread” error at production.[4]
- LangChain 版本升级导致生产多代理应用直接崩(
__aenter__):显示依赖/版本锁定与回归测试的必要性,AgentExecutor ainvoke stopped working after version upgrade[5]
行业/大厂公开复盘:为什么需要“系统化能力”
- Anthropic:有效的代理来自“可组合的简单模式+工程化实践”,而非堆框架(从大量客户项目中总结),Building Effective AI Agents[6]
- OpenAI:发布 Agents SDK + 内置可观测性,明确指出“把能力变成生产级代理很难,需要可视化/追踪/编排工具”,New tools for building agents[7]
- AWS Strands Agents SDK:官方强调生产级可观测性是关键设计点,内建遥测/日志/指标钩子,Strands Agents SDK: A technical deep dive into agent architectures and observability[8]
- Salesforce(Agentforce)博客:总结生产失败 5 大原因(检索静默失败、缺乏容错、把 ReAct 当编排等),主张工程化 RAG/容错/评估,5 Reasons Why AI Agents and RAG Pipelines Fail in Production (And How to Fix It)[9]
- LangChain 团队:为什么要做 LangGraph/平台——为控制、耐久性、长运行/突发流量、检查点、重试、记忆而生,并称其已被LinkedIn/Uber/Klarna用于生产代理(厂商口径,但点出“系统化要素”),Building LangGraph: Designing an Agent Runtime from first principles[10]
正向案例:当你用“分布式系统心态”做编排/容错
- 社区经验:把 LLM 编排当分布式系统来做,通过重试/退避/幂等/断路器/持久化队列等模式把多步工作流完成率拉到 99.5%(工程实战帖,强调“系统化”方法论),Production LLM reliability: How I achieved 99.5% job completion despite constant 429 errors[11]
社区实况:有人在生产用,但都在谈“去复杂化 + 有限代理”
- LangGraph 在产线可用的开发者反馈:从 LangChain 的 Agent Executor 迁移;原型→精简→保留必要能力的路线更稳健(去幻觉/去花哨,保留可控),Anyone Using Langchai Agents in production?[12]
4.2. Agent开发的四个阶段
一年多的Agent开发,我经历Agent很简单到Agent真复杂的认知变化,最开始把框架当黑盒,写 prompt 拼拼凑凑,就能跑个 demo,随着场景复杂性提升需要往Agent系统研发的深处走时,难点就逐步暴露出来。我尝试把这个“简单 → 真难”的过程拆了一下:
第一阶段:Hello World 阶段(看起来很简单)
用 LangChain / AutoGen / CrewAI 之类的框架,几行代码就能跑起来。大多数人停在“能对话”、“能调用工具”这层,所以觉得“AI Agent 开发不过如此”。
第二阶段:场景适配阶段(开始遇到坑)
随着Agent解决问题的复杂度提升,慢慢会碰到LLM context窗口装不下,需要裁剪、压缩、选择(即Context 管理问题);发现向量检索结果经常无关、答非所问,需要优化预处理、query 重写(RAG知识管理)。简单场景能跑,稍微复杂点就掉坑。
第三阶段:系统化阶段(复杂性爆炸)
再进一步,Agent随着工具调用、上下文管理增加,需要保证跨会话、跨任务一致性,必须考虑持久化、版本控制、冲突解决。单个Agent无法适应复杂任务,需要多 Agent 协同,此时就必须解决 deadlock、任务冲突、状态回滚。任务的复杂性上来了Agent 流程调试就不是改改 prompt 能解决的,要加 tracing、可观测性工具。
第四阶段:工程落地阶段(真正的硬骨头)
- 业务逻辑 Agent 化:如何测试?如何保证可控性和稳定性?
- 安全与合规:权限、越权调用、数据泄露,必须引入严格的安全边界。
- 监控与 SLO:像运维微服务一样,需要监控、报警、故障恢复。
综上所述,Langchain等框架让Agent“起步门槛”变低,但没有降低“落地门槛”。
4.3. 我对Agent开发认知的演化
我一直围绕自己工作中涉及到的漏洞安全评估开发Agent系统,在经历上面提到的四个Agent开发的时候,我对Agent的思考和理解也在变化:
Level 0:框架幻觉层
- 典型行为:装个 LangChain / AutoGen / CrewAI,跑个官方 demo,改一改 prompt。
- 认知特征:觉得“Agent 开发=写 Prompt”,门槛极低,和写脚本差不多。
- 误区:以为框架解决了一切复杂性,忽略了 memory、编排、测试、安全。
Level 1:场景拼接层
- 典型行为:能把 RAG、工具调用、简单多 Agent 编排拼接在一起,做一个看似可用的原型。
- 认知特征:开始意识到 context 管理、RAG 策略的重要性。
- 痛点:遇到“答非所问”“记忆错乱”“任务无法稳定完成”。
- 误区:尝试用 prompt hack 解决所有问题,忽略了底层信息管理和系统设计。
Level 2:系统设计层
- 典型行为:将 Agent 当成微服务系统,需要考虑架构、可观测性、状态管理。
- 认知特征:理解 memory 本质上是数据库/知识库问题,编排更像工作流调度而非聊天。
- 痛点:debug 成本极高;需要 tracing、日志、指标监控。
- 关键挑战:如何确保 Agent 鲁棒性、可控性、可复现性。
Level 3:工程落地层
-
典型行为:将 Agent 投入业务生产环境。
-
认知特征:把 Agent 开发当成 SRE/安全/分布式系统 一样的工程学科。
-
痛点:
-
测试性:LLM 的非确定性导致无法用传统单测保证稳定。
-
安全性:权限管理、越权调用、prompt 注入防护。
-
监控与SLO:Agent 必须像服务一样可观测、可恢复。
-
关键挑战: 如何让 Agent 可靠到能承载关键业务。
Level 4:智能演化层(前沿探索)
-
典型行为:尝试构建有长期记忆、自主学习、可进化的 Agent 体系。
-
认知特征:不再把 Agent 当 LLM wrapper,而是当 新型分布式智能系统 。
-
挑战:
-
memory 变成知识图谱 + 自适应学习问题;
-
编排涉及博弈、协作甚至涌现行为;
-
安全需要“AI sandboxes”,避免失控;
-
现状:大多数人还没到这个阶段,研究和实验为主。
结合当下对Agent的理解,当前我对Agent的定位是将其视作一个系统组件而非智能机器人,我的目标不是“偶尔惊艳”而是“持续可靠”。基本原则:
1. 原则:
- 先稳定,后聪明;
- 先可观测,后优化;
2. 功能:
- 建立状态与日志的可回放机制;
- 对 Prompt / Memory / RAG 做版本追踪;
- 引入观测指标(成功率、漂移率、冗余调用);
- 明确每个 Agent 的边界与权限范围;
- 在设计上预留“错误恢复”通道;
3. 边界:
- 若 Agent 仅用于一次性任务或探索性实验,复杂度控制可以放宽。
- 若用于生产任务(监控、自动化操作),稳定性与安全边界优先。
- 框架封装越深,越需要额外的可解释层。
4.4. Agent智能化之路
好像有人说2025是Agent元年,经过将近一年的Agent技术迭代,Agent也从工程角度有了比较长足的发展,Langchain基本上已经成为Agent system后端的优先选项,Agent研发也经历 prompt engineering --> context engineering的演变(如下图所示)。

图片源自:Effective context engineering for AI agents | Anthorpic
Agent开发思路
Agent 不是万能药,关键在于为不同复杂度的任务选择合适的自动化阶段。我觉得从Agent的五个演进阶段可以看出:
- 复杂 ≠ 更好
- 不要盲目追求“最强的 Agent 架构”;合适才是关键。
- 对简单任务使用复杂系统,只会增加成本和风险。
- 真正的挑战是“人”
- 许多失败案例源于设计者错误地选择架构、缺乏阶段性思维。
- 模型和工作流不是问题所在,人是。
- 设计思维的重要性
- 首先评估任务复杂度与可自动化程度;
- 然后决定所需智能水平(脚本 → LLM → RPA → Agent → Multi-Agent);
- 最后匹配合适工具,而不是“一刀切”。

图片源自:Progression of Agentic AI | LinkedIn
Agent设计模式
-
ReAct Pattern(Reasoning + Acting)
-
结构:分为推理(Reasoning)与行动(Acting)两个阶段;
-
机制:
-
LLM1:理解上下文、规划调用的工具/API;
-
LLM2:执行行动、返回结果;
-
优点:推理与行动解耦、结构清晰;
-
应用:问答、多步任务、工具驱动型工作流;
-
CodeAct Pattern
-
流程:
-
User → Plan:用户给出任务,Agent 规划步骤;
-
Code → Feedback:生成并执行代码,根据结果修正;
-
特征:引入反馈循环(代码执行→结果→反思);
-
应用:可验证型任务(数据处理、分析、API 调用);
-
代表思想:AI 通过代码行动;
-
Tool Use Pattern
-
核心概念:从单一 API 调用升级为统一协议(MCP)管理工具;
-
特点:
-
工具抽象化与标准化;
-
支持多模态、多来源工具接入;
-
意义:大幅提高 Agent 的生态兼容性与扩展性;
-
Self-Reflection / Reflexion Pattern
-
架构:
-
Main LLM:执行主任务;
-
Critique LLM(s):批评/审查主模型输出;
-
Generator:结合反馈生成最终答案;
-
优势:
-
引入“自我反思”机制;
-
降低幻觉率,提升逻辑与质量一致性;
-
应用:科研、内容生成、高风险决策场景;
-
Multi-Agent Workflow
-
结构:
-
Core Agent:协调任务分配;
-
Sub-Agents:各自专注于特定功能/领域;
-
Aggregator:整合子代理输出;
-
特征:
-
模拟真实团队协作;
-
支持复杂、跨流程任务;
-
应用:企业级系统、自动化编程、跨部门流程;
-
Agentic RAG Pattern
-
流程:
-
Agent 使用工具执行 Web / Vector 检索;
-
Main Agent 融合检索结果与自身推理;
-
Generator 生成最终答案;
-
特征:
-
动态化的检索 + 推理;
-
Agent 能自主决定“是否、何时、如何”检索;
-
意义:从静态 RAG → 智能、可决策的 Agentic RAG;

图片源自:Agentic System | LinkedIn
Agent最新进展
最后,我想总结一下当下Agent工程上最新进展以及Agent system最新的工程经验值得借鉴与学习:
- Agentic Design Pattern(by Google Antonio Gulli),PDF[13]
- Build agentic AI systems(by Adrew Ng),Course[14]
下面是Agent开发的一些takeaway,有心者可以找来看看各家Agent玩家是怎么计划自己的Agent战略的。

图片源自:Rakesh Gohel | LinkedIn
最后,也许未来的框架能进一步吸收这些复杂性。但工程师的角色不会因此消失。我们要做的,是在复杂性被隐藏的地方,重新建立秩序 —— 让智能不只是可调用,更是可驯服。
可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。
为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和MoPaaS魔泊云联合梳理打造了系统大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

【大模型全套视频教程】
教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。
从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。
同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

深耕 AI 领域技术专家带你快速入门大模型
跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

【精选AI大模型权威PDF书籍/教程】
精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

【AI 大模型面试题 】
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。
【大厂 AI 岗位面经分享(92份)】

【AI 大模型面试真题(102 道)】

【LLMs 面试真题(97 道)】

【640套 AI 大模型行业研究报告】

【AI大模型完整版学习路线图(2025版)】
明确学习方向,2025年 AI 要学什么,这一张图就够了!

👇👇点击下方卡片链接免费领取全部内容👇👇

抓住AI浪潮,重塑职业未来!
科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。
行业趋势洞察:
- 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
- 人才争夺战: 拥有3-5年经验、扎实AI技术功底和真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
- 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。
与其观望,不如行动!
面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

01 为什么分享这份学习资料?
当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。
因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!
我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。
*02 这份资料的价值在哪里?*
专业背书,系统构建:
-
本资料由我与MoPaaS魔泊云的鲁为民博士共同整理。鲁博士拥有清华大学学士和美国加州理工学院博士学位,在人工智能领域造诣深厚:
-
- 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇。
- 拥有多项中美发明专利。
- 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
-
目前,我有幸与鲁博士共同进行人工智能相关研究。

内容实用,循序渐进:
-
资料体系化覆盖了从基础概念入门到核心技术进阶的知识点。
-
包含丰富的视频教程与实战项目案例,强调动手实践能力。
-
无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考,助力你提升技术能力,向大模型相关岗位转型发展。



抓住机遇,开启你的AI学习之旅!

559

被折叠的 条评论
为什么被折叠?



