【大模型实战教程】Qwen2.5 PyTorch模型微调入门实战

1 引言

Qwen2.5是Qwen大型语言模型系列的最新成果。对于Qwen2.5,通义千问团队发布了从0.5到720亿参数不等的基础语言模型及指令调优语言模型。Qwen2.5相比Qwen2带来了以下改进:

  • 显著增加知识量,在编程与数学领域的能力得到极大提升,这得益于我们在这些领域的专业专家模型。
  • 在遵循指令、生成长文本(超过8K个token)、理解结构化数据(例如,表格)以及生成结构化输出特别是JSON方面有显著提升。对系统提示的多样性更具韧性,增强了聊天机器人中的角色扮演实现和条件设定。
  • 支持长上下文处理,上限为128K个token,并能生成最多8K个token。
  • 支持超过29种语言的多语言功能,包括中文、英语、法语、西班牙语、葡萄牙语、德语、意大利语、俄语、日语、韩语、越南语、泰语、阿拉伯语等。

2 环境准备

2.1 安装Ascend CANN Toolkit和Kernels

安装方法请参考安装教程或使用以下命令。

# 请替换URL为CANN版本和设备型号对应的URL
# 安装CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install

# 安装CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install

# 设置环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh

2.1 安装openMind Library以及openMind Hub Client

  • 安装openMind Hub Client
pip install openmind_hub

  • 安装openMind Library,并安装PyTorch框架及其依赖。
pip install openmind[pt]

更详细的安装信息请参考openMind官方的环境安装章节。

  • 安装llama-factory
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch-npu,metrics]"

3 模型链接和下载

Qwen2.5-7B模型系列由社区开发者在魔乐社区贡献,包括:

通过Git从魔乐社区下载模型的repo,以Qwen2.5-7B-Instruct为例:

首先保证已安装git-lfs(https://git-lfs.com)
git lfs install
git clone https://modelers.cn/AI-Research/Qwen2.5-7B-Instruct.git

4 模型推理

用户可以使用openMind Library或者LLaMa Factory进行模型推理,以Qwen2.5-7B-Instruct为例,具体如下:

  • 使用openMind Library进行模型推理

新建推理脚本 inference_qwen2.5_7b_chat.py ,推理脚本内容为:

import argparse
from openmind import AutoModelForCausalLM, AutoTokenizer
from openmind_hub import snapshot_download

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        help="Path to model",
        default=None,
    )

    args = parser.parse_args()

    return args

def main():
    args = parse_args()
    if args.model_name_or_path:
        model_path = args.model_name_or_path
    else:
        model_path = snapshot_download("AI-Research/Qwen2.5-7B-Instruct", revision="main", resume_download=True,
                                    ignore_patterns=[" .h5", " .ot", "*.mspack"])

    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        torch_dtype="auto",
        device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained(model_path)

    prompt = '你是谁'
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=512
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    print(response)

if __name__ == "__main__":
    main()

执行推理脚本:

python inference_qwen2.5_7b_chat.py

推理结果如下: 在这里插入图片描述

  • 使用LLaMa Factory与模型交互

在LLaMa Factory路径下新建examples/inference/qwen2.5_7b_chat.yaml推理配置文件,文件内容为:

model_name_or_path: xxx # 当前仅支持本地加载,填写Qwen2.5-7B-Instruct本地权重路径
template: qwen

使用以下命令与模型进行交互:

llamafactory-cli chat examples/inference/qwen2.5_7b_chat.yaml

交互结果如下:

在这里插入图片描述

5 模型微调

5.1 数据集

使用Llama-Factory集成的identity数据集

5.2 微调

新建examples/train_lora/qwen2.5_7b_lora_sft.yaml 微调配置文件,微调配置文件如下:

### model
model_name_or_path: xxx/xxx  # 预训练模型路径

### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all

### dataset
dataset: identity
template: qwen
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: ./saves/qwen2.5_7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 10.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

使用以下命令进行微调:

llamafactory-cli train examples/train_lora/qwen2.5_7b_lora_sft.yaml

5.3 微调可视化

  • 训练Loss可视化: 在这里插入图片描述

5.4 微调后推理

5.4.1 模型推理

修改examples/inference/qwen2.5_7b_chat.yaml推理配置文件,文件内容为:

model_name_or_path: xxx # 当前仅支持本地加载,填写Qwen2.5-7B-Instruct本地权重路径
adapter_name_or_path: ./saves/qwen2.5_7b/lora/sft
template: qwen

使用以下命令进行推理:

llamafactory-cli chat examples/inference/qwen2.5_7b_chat.yaml

5.4.2推理结果

在这里插入图片描述

6 结语

在之前的华为全联接大会2024上,了解到openMind应用使能套件在AI生态社区中发挥的技术能力。此次Qwen模型的微调经验,也让人看到了openMind在AI模型调优和推理能力。openMind是AI开发者的强有力的助手,它让微调过程变得更加高效和直观。希望每一位开发者都来尝试它,一起交流经验,更好地提升它的能力。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

img

五、大模型面试题大全

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### Qwen 2.5 大规模模型微调实践指南 #### 准备工作 为了成功地对Qwen 2.5进行微调,需准备必要的环境配置和数据集。确保安装了支持CUDA的PyTorch版本以及transformers库[^1]。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 pip install transformers datasets ``` #### 加载预训练模型 加载Qwen 2.5的基础架构并初始化权重参数: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "Qwen/Qwen-2.5" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` #### 数据处理 针对特定任务调整输入格式,比如对于对话生成场景可以构建如下形式的数据样本: ```python def prepare_data(input_texts, target_texts): inputs = tokenizer.batch_encode_plus( input_texts, padding=True, truncation=True, max_length=512, return_tensors="pt" ) labels = tokenizer.batch_encode_plus( target_texts, padding=True, truncation=True, max_length=512, return_tensors="pt" )["input_ids"] return { 'input_ids': inputs['input_ids'], 'attention_mask': inputs['attention_mask'], 'labels': labels } ``` #### 微调过程 定义训练循环,在此过程中更新模型参数以适应新领域或具体应用需求: ```python import torch.optim as optim optimizer = optim.AdamW(model.parameters(), lr=5e-5) for epoch in range(num_epochs): for batch in dataloader: outputs = model(**batch) loss = outputs.loss optimizer.zero_grad() loss.backward() optimizer.step() print(f'Epoch {epoch}, Loss: {loss.item()}') ``` #### 模型评估与保存 完成一轮或多轮迭代后,通过验证集测试性能,并将最终版模型存档以便后续部署使用: ```python # Save the fine-tuned model and tokenizer to disk. output_dir = "./fine_tuned_qwen_2.5" model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值