RBPF-SLAM 算法 (C++ library mrpt-slam)

本文介绍了MRPT中的RBPF-SLAM算法的四种实现方式,包括基于标准提议分布的序贯重要性重采样算法、近似最优提议分布算法、基于栅格地图的最优提议分布算法及基于点图的最优提议分布算法,并提供了每种算法的特点及配置文件示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MRPT中的RBPF-SLAM解决方案

 

1. pfStandardProposal: 基于标准提议分布的序贯重要性重采样算法&任意类型的度量地图

Description: The pfStandardProposal algorithm can be used with any metric map or combination of several of them simultaneously, provided that an observation likelihood function is implemented for the sensor observations in each map. This algorithm however is not recommendable since the “standard” proposal distribution is the motion model (the “actions“), and most of the particles will end up in areas incompatible with the observations, and thus, resampling will occur quite often. Only use this algorithm if the motion model is known to be very precise. Example config files:

2. pfAuxiliaryPFOptimal: 基于任意类型度量地图的近似最优提议分布算法

Description: The pfAuxiliaryPFOptimal algorithm (introduced in this and this papers) can be used with any metric map or combination of several of them simultaneously, provided that an observation likelihood function is implemented for the sensor observations in each map. The algorithm will automatically approximate the optimal proposal distribution disregarding the quality of the motion model. However, the worse the motion model, the longer it will take to run each iteration. Example config files:

 

Example of gridmapping with a RBPF (rbpf-slam app).

 

3. pfOptimalProposal: 基于栅格地图的最优提议分布算法

Description: The pfOptimalProposal algorithm for grid maps corresponds to the heuristic approximation of the optimal proposal introduced by G. Grisetti et al. in: “Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters”, Grisetti, G. Stachniss, C. Burgard, W. IEEE TRANSACTIONS ON ROBOTICS (2007) – PDF The implementation in MRPT relies on a version of ICP for gridmaps. An alternative implementation (independent of MRPT) is the popular gmappingNote: pfOptimalProposal requires setting the parameter pfOptimalProposal_mapSelection (see example config files for details). Example config files:

4. pfOptimalProposal: 基于点图的最优提议分布算法

Description: The pfOptimalProposal algorithm for point maps is a version of the Grisetti et al.’s idea, but applied to point clouds (faster to update than grid maps). AFAIK, this method hasn’t been published in the literature, but works quite fine. Note: pfOptimalProposal requires setting the parameter pfOptimalProposal_mapSelection (see example config files for details). Example config files:


转自:http://www.cnblogs.com/forestwind/p/5630978.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值