小 M 玩数列
【问题描述】
小 W 发现了一个神奇的数列:
() = ( − 1) + ( − 2) { ≥ 3, (1) = 1, (2) = 1} ,这就是著名的 Fibonacci
Sequence = =!。
众所周知,小 M 的数学超级超级好,于是给小 W 出了一道题:
给小 W 两个数 X,Y,其中 X ≤ Y≤ 2^31−1。
小 W 任务就是求出 Fibonacci 数列第 X~Y 项的和除以 10000 的余数。
然而小 W 是数学战五渣,于是只能把这个任务交给机智的你啦。
【输入格式】
第一行一个整数 T,表示数据组数。
接下来 T 行,每行两个数 X,Y,意义如题所述。
【输出格式】
T 行,每行是一个询问的答案。
【输入输出样例】
fibonacci.in fibonacci.out
2
1 5
127 255
12
5976
【数据规模】
对于 80%的数据:T=1,Y<=10^6
对于 100%的数据:T<=1000,Y<=2^31-1
这道题就是要求sum[i];
如果直接算只可以得80’(也不少了)
利用矩阵乘法
我们可以先让单位矩阵B自乘再与A相乘
这时如果简单的B乘B乘B…. 时间复杂度不会降低
所以我们利用二进制的思想
代码
#include<iostream>
#include<cstdio>
using namespace std;
int t,base[4][4],ans[4][4],x,y;
void multi(int a[4][4],int b[4][4],int c[4][4])
{
int temp[4][4];
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
temp[i][j]=0;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
for(int k=1;k<=3;k++)
{
temp[i][j]+=((a[i][k]%10000)*(b[k][j]%10000))%10000;
}
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
{
c[i][j]=temp[i][j]%10000;
}
}
int pc(int m)
{
if(m==2) return 2;
if(m==1) return 1;
if(m==0) return 0;
m-=2;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
{
ans[i][j]=base[i][j]=0;
}
base[1][1]=base[1][2]=base[1][3]=base[2][2]=base[2][3]=base[3][2]=ans[2][1]=ans[3][1]=1;ans[1][1]=2;
while(m)
{
if(m&1) multi(base,ans,ans);//判断这一位是不是1
multi(base,base,base);//自乘
m/=2;//m右移1位(二进制下)
}
return ans[1][1]%10000;
}
int main()
{
freopen("fibonacci.in","r",stdin);
freopen("fibonacci.out","w",stdout);
cin>>t;
for(int i=1;i<=t;i++)
{
scanf("%d%d",&x,&y);
printf("%d\n",(pc(y)-pc(x-1)+10000)%10000);
}
}