摘要
本文使用Python和PyTorch对比实现批标准化 Batch Normalization 函数在测试或推理过程中的算法.
相关
原理及详细解释, 请参考文章 :
Batch Normalization的测试或推理过程及样本参数更新方法.
系列文章索引 :
https://blog.youkuaiyun.com/oBrightLamp/article/details/85067981
正文
1. Batch Normalization 类
文件目录 : vanilla_nn/batch_normalization.py
import numpy as np
class BatchNorm1d:
def __init__(self, train=True, momentum=0.1, eps=1e-5):
self.train = train
self.momentum = momentum
self.eps = eps
self.weight = None
self.bias = None
self.std = None
self.dw = None
self.db = None
self.sqrt = None
self.std = None
self.running_mean = None
self.running_var = None
def __call__(self, x):
if self.train is True:
mean = np.mean(x, axis=0, keepdims=True)
var = np.var(x, axis=0, keepdims=True)
sqrt = np.sqrt(var + self.eps)
std = (x - mean) / sqrt
self.sqrt = sqrt
self.std = std
if self.running_mean is None:
self.running_mean = np.zeros_lik