PyTorch深度学习实战(8)——批归一化

0. 前言

批归一化( Batch Normalization )是一种常用的神经网络优化技术,用于在神经网络的训练过程中对每批输入进行归一化操作。它的主要目的是缓解梯度消失或梯度爆炸的问题,并且加速模型的收敛。在本节中,首先介绍批归一化的基本原理,然后通过实验观察其在网络训练过程中的重要作用。

1. 批归一化原理

我们已经了解到,如果不缩放输入数据,则权重优化的速度很慢。这是由于当面临以下情况时,隐藏层的值可能会很高:

  • 输入数据值高
  • 权重值高
  • 权重和输入的乘积很高

任何一种情况都可能导致隐藏层具有较大输出值。隐藏层可以视为输出层的输入层。因此,当隐藏层值也很大时,同样会导致网络优化缓慢。接下来,我们考虑当输入值非常小,Sigmoid 输出随权重的变化情况:

输入 权重 Sigmoid 输出
0.01 0.00001 0.500
0.
评论 121
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值