深度学习算法与编程
文章目录
前言
本书内容
资料推荐
- 自学深度学习之计算机视觉的入门资料推荐
– https://blog.youkuaiyun.com/oBrightLamp/article/details/84076410
开源许可 LICENSE
所有的说明性文档基于 Creative Commons 协议, 所有的代码基于 MIT 协议.
All documents are licensed under the Creative Commons License, all codes are licensed under the MIT License.
软件版本
Python = 3.6
scikit-learn = 0.20.0
TensorFlow = 1.12
PyTorch = 1.0
损失函数
MSELoss
- 均方差损失函数MSELoss详解及反向传播中的梯度求导
– https://blog.youkuaiyun.com/oBrightLamp/article/details/85137756
cross-entropy
-
通过函数图像介绍信息熵的概念
– https://blog.youkuaiyun.com/oBrightLamp/article/details/85269091 -
案例详解cross-entropy交叉熵损失函数及反向传播
– https://blog.youkuaiyun.com/oBrightLamp/article/details/83962147 -
Python和PyTorch对比实现cross-entropy交叉熵损失函数及反向传播
– https://blog.youkuaiyun.com/oBrightLamp/article/details/84029058
softmax
-
softmax函数详解及误差反向传播的梯度求导
– https://blog.youkuaiyun.com/oBrightLamp/article/details/83959185 -
纯Python和PyTorch对比实现softmax及其反向传播
– https://blog.youkuaiyun.com/oBrightLamp/article/details/84034658
softmax + cross-entropy
-
多标签softmax + cross-entropy交叉熵损失函数详解及反向传播中的梯度求导
– https://blog.youkuaiyun.com/oBrightLa