参考http://blog.youkuaiyun.com/fipped/article/details/39560869
题意:给n个点,现在要使这n个点连通,并且要求代价最小。现在有2个点之间不能直接连通(除了第一个点),求最小代价。
思路:和HDU4126差不多,思路基本借鉴于http://blog.csdn.net/ophunter_lcm/article/details/12030593
别人的代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
using namespace std;
const int N = 1010;
const int M = 300010;
const int inf = 0x3f3f3f3f;
typedef long long ll;
int pre[N], head[N], flag[N];
int vis[N][N];
double low[N];
double dis[N][N], dp[N][N];
struct node
{
int x, y;
} a[N];
struct M_node
{
int to, next;
} e[M];
int n, m, num;
double sum;
void build(int s, int t)
{
e[num].to = t;
e[num].next = head[s];
head[s] = num ++;
}
double Dis(int x1, int y1, int x2, int y2)
{
return sqrt(1.0 * (x1 - x2) * (x1 - x2) + 1.0 * (y1 - y2) * (y1 - y2));
}
void init()
{
sum = 0;
num = 0;
memset(flag, 0, sizeof(flag));
memset(vis, 0, sizeof(vis));
memset(head, -1, sizeof(head));
memset(dp, 0, sizeof(dp));
}
void prim()
{
int i, j;
for(i = 1; i <= n; i ++)
{
low[i] = dis[1][i];
pre[i] = 1;
}
flag[1] = 1;
for(i = 1; i < n; i ++)
{
double Min = inf;
int v;
for(j = 1; j <= n; j ++)
{
if(flag[j] == 0 && low[j] < Min)
{
Min = low[j];
v = j;
}
}
sum += Min;
vis[pre[v]][v] = vis[v][pre[v]] = 1;
build(v, pre[v]);
build(pre[v], v);
flag[v] = 1;
for(j = 1; j <= n; j ++)
{
if(flag[j] == 0 && low[j] > dis[v][j])
{
low[j] = dis[v][j];
pre[j] = v;
}
}
}
}
double dfs(int cur, int u, int fa) //用cur更新cur点所在的子树和另外子树的最短距离
{
double ans = inf;
for(int i = head[u]; ~i; i = e[i].next) //沿着生成树的边遍历
{
if(e[i].to == fa)
continue;
double tmp = dfs(cur, e[i].to, u); //用cur更新的以当前边为割边的两个子树最短距离
ans = min(tmp, ans); //以(fa,u)为割边的2个子树的最短距离
dp[u][e[i].to] = dp[e[i].to][u] = min(tmp, dp[u][e[i].to]);
}
if(cur != fa) //生成树边不更新
ans = min(ans, dis[cur][u]);
return ans;
}
int main()
{
int t, i, j;
scanf("%d", &t);
while(t --)
{
init();
scanf("%d%d", &n, &m);
for(i = 1; i <= n; i ++)
scanf("%d%d", &a[i].x, &a[i].y);
for(i = 1; i <= n; i ++)
for(j = 1; j <= i; j ++)
{
dp[i][j] = dp[j][i] = inf;
if(i == j)
dis[i][j] = 0;
else
dis[i][j] = dis[j][i] = Dis(a[i].x, a[i].y, a[j].x, a[j].y);
}
prim();
double ans = sum;
for(i = 0; i < n; i++)
dfs(i, i, -1);
for(i = 2; i <= n; i++)
{
for(j = 2; j < i; j++)
if(vis[i][j])
ans = max(ans, sum - dis[i][j] + dp[i][j]);
}
printf("%.2lf\n", ans * m);
}
return 0;
}