CF 304A(Pythagorean Theorem II-n内勾股数)

本文深入探讨了数学中的Pythagorean定理,并解释了如何将其应用于编程解决问题,具体通过实例展示了如何计算满足特定条件的直角三角形数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Pythagorean Theorem II
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

In mathematics, the Pythagorean theorem — is a relation in Euclidean geometry among the three sides of a right-angled triangle. In terms of areas, it states:

In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

The theorem can be written as an equation relating the lengths of the sides ab and c, often called the Pythagorean equation:

a2 + b2 = c2

where c represents the length of the hypotenuse, and a and b represent the lengths of the other two sides.

Given n, your task is to count how many right-angled triangles with side-lengths ab and c that satisfied an inequality 1 ≤ a ≤ b ≤ c ≤ n.

Input

The only line contains one integer n (1 ≤ n ≤ 104) as we mentioned above.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
5
output
1
input
74
output
35


显然n^2暴力枚举

注意要加优化-if (i*i+j*j>n*n) break. 不然我的n^2过不了

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cstring>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Forp(x) for(int p=pre[x];p;p=next[p])
int main()
{
//	freopen(".in","r",stdin);
//	freopen(".out","w",stdout);
    int n;
    cin>>n;
    int ans=0;
    For(i,n)
        for(int j=i+1;j<=n;j++)
        {
            int c=i*i+j*j;
            if (c>n*n) break;
            double x=sqrt(c);
            if (abs((x-(int)x))<1e-8) ans++;
        }
    cout<<ans<<endl;

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值