Pythagorean Theorem II

A.Pythagorean Theorem II
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

In mathematics, the Pythagorean theorem — is a relation in Euclidean geometry among the three sides of a right-angled triangle. In terms of areas, it states:

In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

The theorem can be written as an equation relating the lengths of the sides ab and c, often called the Pythagorean equation:

a2 + b2 = c2

where c represents the length of the hypotenuse, and a and b represent the lengths of the other two sides.

Given n, your task is to count how many right-angled triangles with side-lengths ab and c that satisfied an inequality 1 ≤ a ≤ b ≤ c ≤ n.

Input

The only line contains one integer n (1 ≤ n ≤ 104) as we mentioned above.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
5
output
1
input
74
output
35

思路:10^8MLE,二分+枚举n。枚举n是一个好姿势,打表的好姿势。打表的空余时间别找map,or会死的很有节奏。

另外,羽哥的直接开根号其实就是最简单有效的方法。


#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <map>
#include <cstdlib>
#include <cstring>
typedef long long ll;
#define	clr(a)		memset((a),0,sizeof (a))
#define	rep(i,a,b)	for(int i=(a);i<(int)(b);i++)
#define	per(i,a,b)	for(int i=((a)-1);i>=(int)(b);i--)
#define	inf	0x7ffffff
#define	eps			1e-6
using namespace std;
int mm[10005];
int num[10005];
/*bool find(int a,int b,int  key){
    int mid=(a+b)/2;  
    if(mm[mid]==key){
       return 1;            
    } 
    if(a==b-1)return 0;//cause I sent the mid ,not the mid-1 or mid+1。 
    if(mm[mid]>key){
      return find(a,mid,key);     
    }    
    else{
      return find(mid,b,key);     
    }
}*/
// the more adequate 'find' function
bool find(int a,int b,int  key){
    if(a>b)return 0;
    int mid=(a+b)/2;  
    if(mm[mid]==key){
       return 1;            
    } 
    if(mm[mid]>key){
      return find(a,mid-1,key);     
    }    
    else{
      return find(mid+1,b,key);     
    }
}
int main(){  
  for(int i=1;i<=10000;i++){
      mm[i]=i*i;    
  }
  for(int i=10000;i>=1;i--){
     for(int j=i-1;j>=1;j--){
        int tt=i*i-j*j;
        if(tt>j*j)break;
        if(find(1,10000,tt)){        
            num[i]++;                   
        }
            
     }        
  }
  int n;
  scanf("%d",&n);
  int sum=0;
  for(int i=1;i<=n;i++){
      sum+=num[i];       
  }
  printf("%d\n",sum); 
  //system("pause");
  return 0;
}




































在TeX中,引用公式可以使用`\ref`命令,但是这个命令只能引用带有标号的公式。如果你的公式没有标号,可以使用`\eqref`命令来引用,它会自动为公式加上括号和标号。以下是一个示例: ``` \documentclass{article} \begin{document} \section{Introduction} In this section we will introduce the Pythagorean theorem: \begin{equation} \label{eq:pythagorean} a^2 + b^2 = c^2 \end{equation} Equation \ref{eq:pythagorean} is known as the Pythagorean theorem. \end{document} ``` 在这个示例中,我们使用了一个带有标号的方程,并使用`\label`命令为它设置了一个标签。然后,我们使用`\ref`命令来引用这个方程,并在引用中添加了一个“Equation”的前缀。输出结果如下: ``` In this section we will introduce the Pythagorean theorem: a^2 + b^2 = c^2 (1) Equation 1 is known as the Pythagorean theorem. ``` 如果我们没有给方程设置标号,我们可以使用`\eqref`命令来引用它: ``` \documentclass{article} \usepackage{amsmath} \begin{document} \section{Introduction} In this section we will introduce an important equation: \begin{equation*} e^{i\pi} + 1 = 0 \end{equation*} This equation is known as Euler's identity (\eqref{eq:euler}). \begin{equation} \label{eq:euler} e^{i\pi} + 1 = 0 \end{equation} \end{document} ``` 在这个示例中,我们没有给方程设置标号,但我们使用了`\eqref`命令来引用它,并在引用中添加了一个“Equation”的前缀。输出结果如下: ``` In this section we will introduce an important equation: e^{i\pi} + 1 = 0 (1) This equation is known as Euler's identity (Equation 1). ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值