coderforce 304a - Pythagorean Theorem II

本文探讨了一种暴力枚举方法解决特定数学问题的过程,包括如何通过枚举a和b的值来判断c的大小,并提供了代码实现的详细解释。

暴力,枚举a,b的值,判断c的大小。。。。。。。。。。。

但是为什么我的非暴力的代码就是不对呢????

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ls rt<<1
#define rs ls1
#define lson l,mid,ls
#define rson mid+1,r,rs
#define middle (l+r)>>1
#define eps (1e-9)
#define type int
#define clr_all(x,c) memset(x,c,sizeof(x))
#define clr(x,c,n) memset(x,c,sizeof(x[0])*(n+1))
#define MOD 1000000007
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
#define M 200000+5
int main(){
    int n,a,b,cnt,x,c;
    scanf("%d",&n);
cnt=0;
for(a=1;a<=n;a++){
for(b=a;b<=n;b++){
c=a*a+b*b;
if(c>n*n)continue;
x=(int)sqrt(c*1.0);
if(x*x==c)cnt++;
}
}
printf("%d\n",cnt);
    return 0;
}

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值