Proof of Pythagorean Theorem

本文详细介绍了毕达哥拉斯定理的几何证明和代数证明方法。在直角三角形中,斜边的平方等于两腰长的平方和。通过构造图形和相似三角形的性质,证明了定理的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The proof of Pythagorean Theorem in mathematics is very important.

In a right angle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

States that in a right triangle that, the square of a (a2) plus the square of b (b2) is equal to the square of c (c2).

In short it is written as: a 2 + b 2 = c 2 a^2 + b^2 = c^2 a2+b2=c2

Let QR = a, RP = b and PQ = c. Now, draw a square WXYZ of side (b + c). Take points E, F, G, H on sides WX, XY, YZ and ZW respectively such that WE = XF = YG = ZH = b.
在这里插入图片描述
在这里插入图片描述
Then, we will get 4 right-angled triangle, hypotenuse of each of them is ‘a’: remaining sides of each of them are band c. Remaining part of the figure is the

square EFGH, each of whose side is a, so area of the square EFGH is a 2 a^2 a2

Now, we are sure that square
WXYZ = square EFGH + 4 ∆ GYF
or, ( b + c ) 2 = a 2 + 4 × 1 / 2 b c (b + c)^2 = a^2 + 4×1/2 bc (b+c)2=a2+4×1/2bc
or, b 2 + c 2 + 2 b c = a 2 + 2 b c b^2 + c^2 + 2bc = a^2 + 2bc b2+c2+2bc=a2+2bc
or, b 2 + c 2 = a 2 b^2 + c^2 = a^2 b2+c2=a2

Proof of Pythagorean Theorem using Algebra:

Given: A ∆ XYZ in which ∠XYZ = 90°.
To prove: X Z 2 = X Y 2 + Y Z 2 XZ^2 = XY^2 + YZ^2 XZ2=XY2+YZ2
在这里插入图片描述
Construction: Draw YO ⊥ XZ

Proof: In ∆XOY and ∆XYZ, we have,

∠X = ∠X → common

∠XOY = ∠XYZ → each equal to 90°

Therefore, ∆ XOY ~ ∆ XYZ → by AA-similarity

⇒ XO/XY = XY/XZ

⇒ XO × XZ = XY2 ----------------- (i)
In ∆YOZ and ∆XYZ, we have,

∠Z = ∠Z → common

∠YOZ = ∠XYZ → each equal to 90°

Therefore, ∆ YOZ ~ ∆ XYZ → by AA-similarity

⇒ OZ/YZ = YZ/XZ

O Z × X Z = Y Z 2 OZ × XZ = YZ^2 OZ×XZ=YZ2 ----------------- (ii)

From (i) and (ii) we get,

X O × X Z + O Z × X Z = ( X Y 2 + Y Z 2 ) XO × XZ + OZ × XZ = (XY^2 + YZ^2) XO×XZ+OZ×XZ=(XY2+YZ2)

( X O + O Z ) × X Z = ( X Y 2 + Y Z 2 ) (XO + OZ) × XZ = (XY^2 + YZ^2) (XO+OZ)×XZ=(XY2+YZ2)

X Z × X Z = ( X Y 2 + Y Z 2 ) XZ × XZ = (XY^2 + YZ^2) XZ×XZ=(XY2+YZ2)

X Z 2 = ( X Y 2 + Y Z 2 ) XZ ^2 = (XY^2 + YZ^2) XZ2=(XY2+YZ2)

https://www.math-only-math.com/proof-of-pythagorean-theorem.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值