K均值聚类、分层聚类、二阶聚类是SPSS聚类分析中常用的三种聚类方法。K均值聚类使用的是欧式距离的测量方法;分层聚类是根据度量的距离远近,构建谱系分析;二阶聚类是利用距离测量得到分类树,然后再利用BIC或AIC准则判别最佳聚类。
除了以上聚类原理的不同外,三种聚类方法还有哪些不同点呢?接下来,我们从参数设置与结果解读两方面进行详细解读。
图1:二阶、K均值、系统聚类
一、参数设置
K均值聚类仅可用于连续变量的聚类分析,因此,如图1所示,其参数设置面板仅提供了一个变量选项。另外,K均值聚类主要是采用了迭代计算的方法。
图2:K均值聚类参数设置
虽然系统聚类分析也仅提供了一个变量选项,但其变量选项可添加分类变量或连续变量。但要注意的是,单次只能分析同一种类型的变量,也就是说,不能将分类变量与连续变量同时添加到变量选项框,只能添加其中一种类型。
另外,与K均值聚类仅可分析个案聚类