USACO section 1.3 Wormholes

本文探讨了通过深度优先搜索和模拟行走过程的方法解决虫洞迷宫问题。具体介绍了使用C++实现的算法思路,包括如何进行配对、路径搜索及判断是否卡住等关键步骤。

这个题目我首先考虑的是如何配对的问题。
我的想法是,先给所有点按输入次序编号。然后开一个数组来记录配对问题。利用深搜枚举出所有情况。
之后就是,对每一组配对结果的测试。我的想法就是,粗暴的模拟一下他的行走过程,设定一个阈值。当你经过各个虫洞点的数量已经超过阈值时,就算你卡住了。阈值的设定就是根据感觉来的。。。。

/*
ID: 13913351
LANG: C++
TASK:wormhole
*/
#include<iostream>
#include<fstream>
#include<cstring>
#define cin fin
#define cout fout
using namespace std;
ifstream  fin("wormhole.in");
ofstream  fout("wormhole.out");

const int N=15;
int n;
int a[N+1][2];
int pa[N+1];//pa[i]  表示与i与pa[i]是一对
bool flag[N+1];
int sum=0;
int route[N*4];
bool tag=false;

void search(int cur,int k)
{
    //cout<<pa[cur];
    k++;
    long long int min=9999999999;
    int next=0;
    int i;
    for(i=1;i<=n;i++)
    {
        if(i!=pa[cur]&&a[i][1]==a[pa[cur]][1]&&a[i][0]>a[pa[cur]][0])
        {
            if(min>a[i][0]-a[pa[cur]][0])
            {
                min=a[i][0]-a[pa[cur]][0];
                next=i;
            }
        }
    }
    if(next!=0)
    {
        k++;
        if(k>50)
        {
            tag=true;
            return ;
        }
        search(next,k);
    } 

}
bool test()
{
    int i;
    for(i=1;i<=n;i++)
    {
        tag=false;
        search(i,1);
        if(tag) return true;
    }
    return false;
}
void dfs(int step)
{
    if(step==n+1)
    {
        if(test())
        {
            sum++;
        //  cout<<endl;
        }
        return ;
    }

    if(flag[step])
    {
        dfs(step+1);
        return ;
    }

    for(int i=1;i<=n;i++)
    {
        if(!flag[i]&&i!=step)
        {
            pa[step]=i;
            pa[i]=step;

            flag[i]=true;
            flag[step]=true;

            dfs(step+1);

            flag[step]=false;
            flag[i]=false;
        }
    }
}
int main()
{
    cin>>n;
    int i;
    for(i=1;i<=n;i++)
    {
        cin>>a[i][0]>>a[i][1]; 
    }
    memset(flag,false,sizeof(flag));
    dfs(1);
    cout<<sum<<endl;
} 

代码写的不怎么规范,我会慢慢成长的。

本文旨在系统阐述利用MATLAB平台执行多模态语音分离任务的方法,重点围绕LRS3数据集的数据生成流程展开。LRS3(长时RGB+音频语音数据集)作为一个规模庞大的视频与音频集合,整合了丰富的视觉与听觉信息,适用于语音识别、语音分离及情感分析等多种研究场景。MATLAB凭借其高效的数值计算能力与完备的编程环境,成为处理此类多模态任务的适宜工具。 多模态语音分离的核心在于综合利用视觉与听觉等多种输入信息来解析语音信号。具体而言,该任务的目标是从混合音频中分离出不同说话人的声音,并借助视频中的唇部运动信息作为辅助线索。LRS3数据集包含大量同步的视频与音频片段,提供RGB视频、单声道音频及对应的文本转录,为多模态语音处理算法的开发与评估提供了重要平台。其高质量与大容量使其成为该领域的关键资源。 在相关资源包中,主要包含以下两部分内容: 1. 说明文档:该文件详细阐述了项目的整体结构、代码运行方式、预期结果以及可能遇到的问题与解决方案。在进行数据处理或模型训练前,仔细阅读此文档对正确理解与操作代码至关重要。 2. 专用于语音分离任务的LRS3数据集版本:解压后可获得原始的视频、音频及转录文件,这些数据将由MATLAB脚本读取并用于生成后续训练与测试所需的数据。 基于MATLAB的多模态语音分离通常遵循以下步骤: 1. 数据预处理:从LRS3数据集中提取每段视频的音频特征与视觉特征。音频特征可包括梅尔频率倒谱系数、感知线性预测系数等;视觉特征则涉及唇部运动的检测与关键点定位。 2. 特征融合:将提取的音频特征与视觉特征相结合,构建多模态表示。融合方式可采用简单拼接、加权融合或基于深度学习模型的复杂方法。 3. 模型构建:设计并实现用于语音分离的模型。传统方法可采用自适应滤波器或矩阵分解,而深度学习方法如U-Net、Transformer等在多模态学习中表现优异。 4. 训练与优化:使用预处理后的数据对模型进行训练,并通过交叉验证与超参数调整来优化模型性能。 5. 评估与应用:采用信号失真比、信号干扰比及信号伪影比等标准指标评估模型性能。若结果满足要求,该模型可进一步应用于实际语音分离任务。 借助MATLAB强大的矩阵运算功能与信号处理工具箱,上述步骤得以有效实施。需注意的是,多模态任务常需大量计算资源,处理大规模数据集时可能需要对代码进行优化或借助GPU加速。所提供的MATLAB脚本为多模态语音分离研究奠定了基础,通过深入理解与运用这些脚本,研究者可更扎实地掌握语音分离的原理,从而提升其在实用场景中的性能表现。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
USACO1.3中最长回文Calf Flac问题要求在给定的文本中找出最长的回文子串,如果有多个回文长度都等于最大值,输出最前面出现的那一个。以下为该问题的解决方案: ### 解题思路 1. **预处理文本**:去除文本中非字母字符,同时记录每个字母在原文本中的位置,方便后续输出原始回文子串。 2. **遍历文本**:以每个字母为中心,向两边扩展来寻找回文子串。回文子串分为奇数长度和偶数长度两种情况,需要分别处理。 3. **记录最长回文子串**:在遍历过程中,记录最长回文子串的长度和起始位置,同时记录该回文子串在原文本中的起始和结束位置。 4. **输出结果**:输出最长回文子串的长度以及原文本中的最长回文子串。 ### 代码实现 ```python # 读取输入 input_text = input() # 预处理文本,记录字母及其在原文本中的位置 letters = [] positions = [] for i, char in enumerate(input_text): if char.isalpha(): letters.append(char.upper()) positions.append(i) n = len(letters) max_length = 0 start = 0 end = 0 # 遍历每个字母,以其为中心扩展寻找回文子串 for i in range(n): # 奇数长度回文串 left, right = i, i while left >= 0 and right < n and letters[left] == letters[right]: length = right - left + 1 if length > max_length: max_length = length start = positions[left] end = positions[right] left -= 1 right += 1 # 偶数长度回文串 left, right = i, i + 1 while left >= 0 and right < n and letters[left] == letters[right]: length = right - left + 1 if length > max_length: max_length = length start = positions[left] end = positions[right] left -= 1 right += 1 # 输出结果 print(max_length) print(input_text[start:end + 1]) ``` ### 复杂度分析 - **时间复杂度**:$O(n^2)$,其中 $n$ 是文本中字母的数量。因为对于每个字母,都需要向两边扩展来寻找回文子串。 - **空间复杂度**:$O(n)$,主要用于存储字母和其在原文本中的位置。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值