LIO-SAM(ros2 ubuntu22-humble 非docker)

一.环境配置

1.创建个工作空间
mkdir -p ~/LIO-SAM/src
2.拉个代码

搞个zip代码放/LIO-SAM/src里(或者直接git就不需要创建工作空间了):

https://github.com/sram-v/LIO-SAM-ROS2/tree/ros2

3.整个conda环境

省的配置错了都乱套了(去官网搞个具体的步骤不放出来了,conda官方网址https://www.anaconda.com/download

conda create -n lio-sam-clean python=3.9
4.编译下,也可以先不编译直接装包
cd ~/LIO-SAM

colcon build --packages-select lio_sam

一定会缺少很多包:

5.看有没有你缺的依赖
缺少spdlog
conda install -c conda-forge spdlog -y

缺少console_bridge

# 从源码编译 console-bridge

cd ~
git clone https://github.com/ros/console_bridge.git
cd console_bridge
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX ..
make -j$(nproc)
make install

# 验证安装
pkg-config --modversion console-bridge


# 设置 PKG_CONFIG_PATH 包含 Conda 环境的 pkgconfig 目录
export PKG_CONFIG_PATH=$CONDA_PREFIX/lib/pkgconfig:$PKG_CONFIG_PATH

# 现在验证 console_bridge
pkg-config --modversion console_bridge

缺少orocos_kdl

conda install -c conda-forge orocos-kdl=1.5.3 -y
pkg-config --modversion orocos_kdl
缺少 pcl-config
conda install -c conda-forge pcl=1.15.1 -y
export PCL_DIR=$CONDA_PREFIX/share/pcl-1.15

cat > test_pcl_cmake.cmake << 'EOF'
find_package(PCL REQUIRED)
message(STATUS "PCL found: ${PCL_FOUND}")
message(STATUS "PCL version: ${PCL_VERSION}")
message(STATUS "PCL include directories: ${PCL_INCLUDE_DIRS}")
message(STATUS "PCL library directories: ${PCL_LIBRARY_DIRS}")
message(STATUS "PCL libraries: ${PCL_LIBRARIES}")
EOF
缺少eigen-config
# 安装 Eigen 3.4.0 最新稳定版本
conda install -c conda-forge eigen=3.4.0 -y

# 验证安装
find $CONDA_PREFIX -name "*Eigen*" -type f 2>/dev/null | head -10


# 创建 Eigen CMake 配置目录
mkdir -p $CONDA_PREFIX/share/eigen3/cmake

# 创建 EigenConfig.cmake 文件
cat > $CONDA_PREFIX/share/eigen3/cmake/EigenConfig.cmake << 'EOF'
# Eigen CMake 配置文件
set(Eigen_FOUND TRUE)
set(Eigen_INCLUDE_DIRS "$ENV{CONDA_PREFIX}/include/eigen3")

# 设置版本信息
set(Eigen_VERSION "3.4.0")
set(Eigen_VERSION_MAJOR 3)
set(Eigen_VERSION_MINOR 4)
set(Eigen_VERSION_PATCH 0)

# 创建导入目标
if(NOT TARGET Eigen3::Eigen)
    add_library(Eigen3::Eigen INTERFACE IMPORTED)
    set_target_properties(Eigen3::Eigen PROPERTIES
        INTERFACE_INCLUDE_DIRECTORIES "${Eigen_INCLUDE_DIRS}"
    )
endif()

if(NOT TARGET Eigen::Eigen)
    add_library(Eigen::Eigen INTERFACE IMPORTED)
    set_target_properties(Eigen::Eigen PROPERTIES
        INTERFACE_INCLUDE_DIRECTORIES "${Eigen_INCLUDE_DIRS}"
    )
endif()

message(STATUS "Eigen found: ${Eigen_INCLUDE_DIRS}")
EOF

# 创建 EigenConfigVersion.cmake 文件
cat > $CONDA_PREFIX/share/eigen3/cmake/EigenConfigVersion.cmake << 'EOF'
set(PACKAGE_VERSION "3.4.0")

# 检查版本兼容性
if(PACKAGE_VERSION VERSION_LESS PACKAGE_FIND_VERSION)
    set(PACKAGE_VERSION_COMPATIBLE FALSE)
else()
    set(PACKAGE_VERSION_COMPATIBLE TRUE)
    if(PACKAGE_VERSION VERSION_EQUAL PACKAGE_FIND_VERSION)
        set(PACKAGE_VERSION_EXACT TRUE)
    endif()
endif()
EOF
缺少empy
conda install -c conda-forge empy -y


# 验证安装
python -c "import em; print('empy 模块安装成功')"
缺少catkin_pkg
conda install -c conda-forge catkin_pkg -y
python -c "import catkin_pkg; print('catkin_pkg模块安装成功')"
缺少lark
conda install -c conda-forge lark -y

# 验证安装
python -c "import lark; print('lark 模块安装成功')"
找不到 pcl_conversions/pcl_conversions.h

/opt/ros/humble/include/pcl_conversions/pcl_conversions/pcl_conversions.h,这是一个嵌套的目录结构。代码中引用的是 #include <pcl_conversions/pcl_conversions.h>,但实际文件在 pcl_conversions/pcl_conversions/ 子目录中。

echo "=== 创建正确的符号链接结构 ==="

# 清理之前的尝试
rm -rf $CONDA_PREFIX/include/pcl_conversions*

# 创建正确的目录结构
mkdir -p $CONDA_PREFIX/include/pcl_conversions

# 创建符号链接指向实际的 pcl_conversions.h
ln -sf /opt/ros/humble/include/pcl_conversions/pcl_conversions/pcl_conversions.h $CONDA_PREFIX/include/pcl_conversions/pcl_conversions.h

# 验证符号链接
echo "=== 验证符号链接 ==="
ls -la $CONDA_PREFIX/include/pcl_conversions/
find $CONDA_PREFIX/include -name "*pcl_conversions*" | head -10

# 测试包含
echo "=== 测试包含 ==="
cat > /tmp/test_fixed.cpp << 'EOF'
#include <pcl_conversions/pcl_conversions.h>
int main() { 
    printf("pcl_conversions.h 包含成功!\n");
    return 0; 
}
EOF

这个环境配置就差不多了

二.编译代码

colcon build --packages-select lio_sam

三.运行数据集

数据集你们可以从https://github.com/sram-v/LIO-SAM-ROS2/tree/ros2这里下载对应的,我这使用的是https://pan.baidu.com/s/1hhHvn96uEsDYJNss3Z209Q 提取码:2478(是用的这里的哈,注明一下出处:https://gitee.com/janetmayle/Simple-LIO-SAM-ROS2#https://gitee.com/link?target=https%3A%2F%2Fpan.baidu.com%2Fs%2F1hhHvn96uEsDYJNss3Z209Q

这个数据集的话题名和我们配置文件中的不一样哈,但没有关系,用我这个指令就可以了

ros2 bag play ./park_dataset/  --remap /points_raw:=/points /imu_raw:=/imu/data  --clock --loop

四.运行程序

source ./install/setup.bash
ros2 launch lio_sam run.launch.py
rviz如下:

五.生成地图

修改/LIO-SAM/src/LIO-SAM-ros2/config中的params.yaml文件中的具体保存地图的目录,和上面一个参数

然后按crtl+c退出的时候可以生成地图,但如果你想调用服务在过程中保留图的话不太行,因为这个环境的原因,我这边作了一个改进,修改了LIO-SAM/src/LIO-SAM-ros2/src下的mapOptmization.cpp,现在可以进行发布

ros2 topic pub /lio_sam/save_map_trigger std_msgs/msg/String "{data: '/LIO-SAM/pcd'}"    //这个是一直保存哈

ros2 topic pub -1 /lio_sam/save_map_trigger std_msgs/msg/String "{data: '/LIO-SAM/pcd'}"    //这个是保存一次

进行保存了,/LIO-SAM/pcd'是你想保存地图的路径,修改之后的mapOptmization.cpp如下(我想直接上传来着,刚绑定资源不知道搞哪去了,使用不太熟练,请多见谅),更换这个文件之后记得重新编译运行:

#include "utility.hpp"
#include "lio_sam/msg/cloud_info.hpp"
#include "lio_sam/srv/save_map.hpp"
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>

#include <gtsam/nonlinear/ISAM2.h>

using namespace gtsam;

using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using symbol_shorthand::V; // Vel   (xdot,ydot,zdot)
using symbol_shorthand::B; // Bias  (ax,ay,az,gx,gy,gz)
using symbol_shorthand::G; // GPS pose

/*
    * A point cloud type that has 6D pose info ([x,y,z,roll,pitch,yaw] intensity is time stamp)
    */
struct PointXYZIRPYT
{
    PCL_ADD_POINT4D
    PCL_ADD_INTENSITY;                  // preferred way of adding a XYZ+padding
    float roll;
    float pitch;
    float yaw;
    double time;
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW   // make sure our new allocators are aligned
} EIGEN_ALIGN16;                    // enforce SSE padding for correct memory alignment

POINT_CLOUD_REGISTER_POINT_STRUCT (PointXYZIRPYT,
                                   (float, x, x) (float, y, y)
                                   (float, z, z) (float, intensity, intensity)
                                   (float, roll, roll) (float, pitch, pitch) (float, yaw, yaw)
                                   (double, time, time))

typedef PointXYZIRPYT  PointTypePose;


class mapOptimization : public ParamServer
{

public:

    // gtsam
    NonlinearFactorGraph gtSAMgraph;
    Values initialEstimate;
    Values optimizedEstimate;
    ISAM2 *isam;
    Values isamCurrentEstimate;
    Eigen::MatrixXd poseCovariance;

    rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pubLaserCloudSurround;
    rclcpp::Publisher<nav_msgs::msg::Odometry>::SharedPtr pubLaserOdometryGlobal;
    rclcpp::Publisher<nav_msgs::msg::Odometry>::SharedPtr pubLaserOdometryIncremental;
    rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pubKeyPoses;
    rclcpp::Publisher<nav_msgs::msg::Path>::SharedPtr pubPath;

    rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pubHistoryKeyFrames;
    rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pubIcpKeyFrames;
    rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pubRecentKeyFrames;
    rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pubRecentKeyFrame;
    rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pubCloudRegisteredRaw;
    rclcpp::Publisher<visualization_msgs::msg::MarkerArray>::SharedPtr pubLoopConstraintEdge;

    rclcpp::Service<lio_sam::srv::SaveMap>::SharedPtr srvSaveMap;
    rclcpp::Subscription<lio_sam::msg::CloudInfo>::SharedPtr subCloud;
    rclcpp::Subscription<nav_msgs::msg::Odometry>::SharedPtr subGPS;
    rclcpp::Subscription<std_msgs::msg::Float64MultiArray>::SharedPtr subLoop;

    // 添加保存地图的话题订阅
    rclcpp::Subscription<std_msgs::msg::String>::SharedPtr subSaveMapTrigger;

    std::deque<nav_msgs::msg::Odometry> gpsQueue;
    lio_sam::msg::CloudInfo cloudInfo;

    vector<pcl::PointCloud<PointType>::Ptr> cornerCloudKeyFrames;
    vector<pcl::PointCloud<PointType>::Ptr> surfCloudKeyFrames;
    
    pcl::PointCloud<PointType>::Ptr cloudKeyPoses3D;
    pcl::PointCloud<PointTypePose>::Ptr cloudKeyPoses6D;
    pcl::PointCloud<PointType>::Ptr copy_cloudKeyPoses3D;
    pcl::PointCloud<PointTypePose>::Ptr copy_cloudKeyPoses6D;

    pcl::PointCloud<PointType>::Ptr laserCloudCornerLast; // corner feature set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudSurfLast; // surf feature set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudCornerLastDS; // downsampled corner feature set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudSurfLastDS; // downsampled surf feature set from odoOptimization

    pcl::PointCloud<PointType>::Ptr laserCloudOri;
    pcl::PointCloud<PointType>::Ptr coeffSel;

    std::vector<PointType> laserCloudOriCornerVec; // corner point holder for parallel computation
    std::vector<PointType> coeffSelCornerVec;
    std::vector<bool> laserCloudOriCornerFlag;
    std::vector<PointType> laserCloudOriSurfVec; // surf point holder for parallel computation
    std::vector<PointType> coeffSelSurfVec;
    std::vector<bool> laserCloudOriSurfFlag;

    map<int, pair<pcl::PointCloud<PointType>, pcl::PointCloud<PointType>>> laserCloudMapContainer;
    pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMap;
    pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMap;
    pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMapDS;
    pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMapDS;

    pcl::KdTreeFLANN<PointType>::Ptr kdtreeCornerFromMap;
    pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurfFromMap;

    pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurroundingKeyPoses;
    pcl::KdTreeFLANN<PointType>::Ptr kdtreeHistoryKeyPoses;

    pcl::VoxelGrid<PointType> downSizeFilterCorner;
    pcl::VoxelGrid<PointType> downSizeFilterSurf;
    pcl::VoxelGrid<PointType> downSizeFilterICP;
    pcl::VoxelGrid<PointType> downSizeFilterSurroundingKeyPoses; // for surrounding key poses of scan-to-map optimization

    rclcpp::Time timeLaserInfoStamp;
    double timeLaserInfoCur;

    float transformTobeMapped[6];

    std::mutex mtx;
    std::mutex mtxLoopInfo;

    bool isDegenerate = false;
    Eigen::Matrix<float, 6, 6> matP;

    int laserCloudCornerFromMapDSNum = 0;
    int laserCloudSurfFromMapDSNum = 0;
    int laserCloudCornerLastDSNum = 0;
    int laserCloudSurfLastDSNum = 0;

    bool aLoopIsClosed = false;
    map<int, int> loopIndexContainer; // from new to old
    vector<pair<int, int>> loopIndexQueue;
    vector<gtsam::Pose3> loopPoseQueue;
    vector<gtsam::noiseModel::Diagonal::shared_ptr> loopNoiseQueue;
    deque<std_msgs::msg::Float64MultiArray> loopInfoVec;

    nav_msgs::msg::Path globalPath;

    Eigen::Affine3f transPointAssociateToMap;
    Eigen::Affine3f incrementalOdometryAffineFront;
    Eigen::Affine3f incrementalOdometryAffineBack;

    std::unique_ptr<tf2_ros::TransformBroadcaster> br;

    // 添加保存地图的线程和变量
    std::thread saveMapThread;
    std::atomic<bool> saveMapRequested{false};
    std::string requestedSavePath;
    float requestedResolution = 0.0f;

    mapOptimization(const rclcpp::NodeOptions & options) : ParamServer("lio_sam_mapOptimization", options)
    {
        ISAM2Params parameters;
        parameters.relinearizeThreshold = 0.1;
        parameters.relinearizeSkip = 1;
        isam = new ISAM2(parameters);

        pubKeyPoses = create_publisher<sensor_msgs::msg::PointCloud2>("lio_sam/mapping/trajectory", 1);
        pubLaserCloudSurround = create_publisher<sensor_msgs::msg::PointCloud2>("lio_sam/mapping/map_global", 1);
        pubLaserOdometryGlobal = create_publisher<nav_msgs::msg::Odometry>("lio_sam/mapping/odometry", qos);
        pubLaserOdometryIncremental = create_publisher<nav_msgs::msg::Odometry>(
            "lio_sam/mapping/odometry_incremental", qos);
        pubPath = create_publisher<nav_msgs::msg::Path>("lio_sam/mapping/path", 1);
        br = std::make_unique<tf2_ros::TransformBroadcaster>(this);

        subCloud = create_subscription<lio_sam::msg::CloudInfo>(
            "lio_sam/feature/cloud_info", qos,
            std::bind(&mapOptimization::laserCloudInfoHandler, this, std::placeholders::_1));
        subGPS = create_subscription<nav_msgs::msg::Odometry>(
            gpsTopic, 200,
            std::bind(&mapOptimization::gpsHandler, this, std::placeholders::_1));
        subLoop = create_subscription<std_msgs::msg::Float64MultiArray>(
            "lio_loop/loop_closure_detection", qos,
            std::bind(&mapOptimization::loopInfoHandler, this, std::placeholders::_1));

        // 添加保存地图触发话题订阅
        subSaveMapTrigger = create_subscription<std_msgs::msg::String>(
            "lio_sam/save_map_trigger", 10,
            std::bind(&mapOptimization::saveMapTriggerHandler, this, std::placeholders::_1));

        auto saveMapService = [this](const std::shared_ptr<rmw_request_id_t> request_header, const std::shared_ptr<lio_sam::srv::SaveMap::Request> req, std::shared_ptr<lio_sam::srv::SaveMap::Response> res) -> void {
            (void)request_header;
            string saveMapDirectory;
            cout << "****************************************************" << endl;
            cout << "Saving map to pcd files ..." << endl;
            if(req->destination.empty()) saveMapDirectory = std::getenv("HOME") + savePCDDirectory;
            else saveMapDirectory = std::getenv("HOME") + req->destination;
            cout << "Save destination: " << saveMapDirectory << endl;
            // create directory and remove old files;
            int unused = system((std::string("exec rm -r ") + saveMapDirectory).c_str());
            unused = system((std::string("mkdir -p ") + saveMapDirectory).c_str());
            // save key frame transformations
            pcl::io::savePCDFileBinary(saveMapDirectory + "/trajectory.pcd", *cloudKeyPoses3D);
            pcl::io::savePCDFileBinary(saveMapDirectory + "/transformations.pcd", *cloudKeyPoses6D);
            // extract global point cloud map
            pcl::PointCloud<PointType>::Ptr globalCornerCloud(new pcl::PointCloud<PointType>());
            pcl::PointCloud<PointType>::Ptr globalCornerCloudDS(new pcl::PointCloud<PointType>());
            pcl::PointCloud<PointType>::Ptr globalSurfCloud(new pcl::PointCloud<PointType>());
            pcl::PointCloud<PointType>::Ptr globalSurfCloudDS(new pcl::PointCloud<PointType>());
            pcl::PointCloud<PointType>::Ptr globalMapCloud(new pcl::PointCloud<PointType>());
            for (int i = 0; i < (int)cloudKeyPoses3D->size(); i++) 
            {
                *globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i],  &cloudKeyPoses6D->points[i]);
                *globalSurfCloud   += *transformPointCloud(surfCloudKeyFrames[i],    &cloudKeyPoses6D->points[i]);
                cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";
            }
            if(req->resolution != 0)
            {
               cout << "\n\nSave resolution: " << req->resolution << endl;
               // down-sample and save corner cloud
               downSizeFilterCorner.setInputCloud(globalCornerCloud);
               downSizeFilterCorner.setLeafSize(req->resolution, req->resolution, req->resolution);
               downSizeFilterCorner.filter(*globalCornerCloudDS);
               pcl::io::savePCDFileBinary(saveMapDirectory + "/CornerMap.pcd", *globalCornerCloudDS);
               // down-sample and save surf cloud
               downSizeFilterSurf.setInputCloud(globalSurfCloud);
               downSizeFilterSurf.setLeafSize(req->resolution, req->resolution, req->resolution);
               downSizeFilterSurf.filter(*globalSurfCloudDS);
               pcl::io::savePCDFileBinary(saveMapDirectory + "/SurfMap.pcd", *globalSurfCloudDS);
            }
            else
            {
            // save corner cloud
               pcl::io::savePCDFileBinary(saveMapDirectory + "/CornerMap.pcd", *globalCornerCloud);
               // save surf cloud
               pcl::io::savePCDFileBinary(saveMapDirectory + "/SurfMap.pcd", *globalSurfCloud);
            }
            // save global point cloud map
            *globalMapCloud += *globalCornerCloud;
            *globalMapCloud += *globalSurfCloud;
            int ret = pcl::io::savePCDFileBinary(saveMapDirectory + "/GlobalMap.pcd", *globalMapCloud);
            res->success = ret == 0;
            downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
            downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
            cout << "****************************************************" << endl;
            cout << "Saving map to pcd files completed\n" << endl;
            return;
        };
        
        srvSaveMap = create_service<lio_sam::srv::SaveMap>("lio_sam/save_map", saveMapService);
        pubHistoryKeyFrames = create_publisher<sensor_msgs::msg::PointCloud2>("lio_sam/mapping/icp_loop_closure_history_cloud", 1);
        pubIcpKeyFrames = create_publisher<sensor_msgs::msg::PointCloud2>("lio_sam/mapping/icp_loop_closure_history_cloud", 1);
        pubLoopConstraintEdge = create_publisher<visualization_msgs::msg::MarkerArray>("/lio_sam/mapping/loop_closure_constraints", 1);

        pubRecentKeyFrames = create_publisher<sensor_msgs::msg::PointCloud2>("lio_sam/mapping/map_local", 1);
        pubRecentKeyFrame = create_publisher<sensor_msgs::msg::PointCloud2>("lio_sam/mapping/cloud_registered", 1);
        pubCloudRegisteredRaw = create_publisher<sensor_msgs::msg::PointCloud2>("lio_sam/mapping/cloud_registered_raw", 1);

        downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
        downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        downSizeFilterICP.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        downSizeFilterSurroundingKeyPoses.setLeafSize(surroundingKeyframeDensity, surroundingKeyframeDensity, surroundingKeyframeDensity); // for surrounding key poses of scan-to-map optimization

        allocateMemory();
    }

    // 保存地图的线程函数
    void saveMapInThread(const std::string& directory, float resolution)
    {
        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files in thread..." << endl;
        cout << "Save destination: " << directory << endl;
        
        // 创建目录并删除旧文件
        int unused = system((std::string("exec rm -r ") + directory).c_str());
        unused = system((std::string("mkdir -p ") + directory).c_str());
        
        // 保存关键帧轨迹
        pcl::io::savePCDFileBinary(directory + "/trajectory.pcd", *cloudKeyPoses3D);
        pcl::io::savePCDFileBinary(directory + "/transformations.pcd", *cloudKeyPoses6D);
        
        // 提取全局点云地图
        pcl::PointCloud<PointType>::Ptr globalCornerCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalCornerCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapCloud(new pcl::PointCloud<PointType>());
        
        for (int i = 0; i < (int)cloudKeyPoses3D->size(); i++) 
        {
            *globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i],  &cloudKeyPoses6D->points[i]);
            *globalSurfCloud   += *transformPointCloud(surfCloudKeyFrames[i],    &cloudKeyPoses6D->points[i]);
            cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";
        }
        
        if(resolution != 0)
        {
            cout << "\n\nSave resolution: " << resolution << endl;
            // 下采样并保存角点云
            downSizeFilterCorner.setInputCloud(globalCornerCloud);
            downSizeFilterCorner.setLeafSize(resolution, resolution, resolution);
            downSizeFilterCorner.filter(*globalCornerCloudDS);
            pcl::io::savePCDFileBinary(directory + "/CornerMap.pcd", *globalCornerCloudDS);
            // 下采样并保存面点云
            downSizeFilterSurf.setInputCloud(globalSurfCloud);
            downSizeFilterSurf.setLeafSize(resolution, resolution, resolution);
            downSizeFilterSurf.filter(*globalSurfCloudDS);
            pcl::io::savePCDFileBinary(directory + "/SurfMap.pcd", *globalSurfCloudDS);
        }
        else
        {
            // 保存角点云
            pcl::io::savePCDFileBinary(directory + "/CornerMap.pcd", *globalCornerCloud);
            // 保存面点云
            pcl::io::savePCDFileBinary(directory + "/SurfMap.pcd", *globalSurfCloud);
        }
        
        // 保存全局点云地图
        *globalMapCloud += *globalCornerCloud;
        *globalMapCloud += *globalSurfCloud;
        pcl::io::savePCDFileBinary(directory + "/GlobalMap.pcd", *globalMapCloud);
        
        // 重置滤波器参数
        downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
        downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        
        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files completed\n" << endl;
    }

    // 处理保存地图触发消息
    void saveMapTriggerHandler(const std_msgs::msg::String::SharedPtr msg)
    {
        RCLCPP_INFO(get_logger(), "Received save map trigger: %s", msg->data.c_str());
        
        // 解析消息内容,格式为 "路径:分辨率" 或仅 "路径"
        std::string data = msg->data;
        std::string path;
        float resolution = 0.0f;
        
        size_t colon_pos = data.find(':');
        if (colon_pos != std::string::npos) {
            path = data.substr(0, colon_pos);
            try {
                resolution = std::stof(data.substr(colon_pos + 1));
            } catch (const std::exception& e) {
                RCLCPP_WARN(get_logger(), "Invalid resolution format, using default 0.0");
            }
        } else {
            path = data;
        }
        
        // 如果路径为空,使用默认路径
        if (path.empty()) {
            path = savePCDDirectory;
        }
        
        // 构建完整路径
        const char* home_dir = std::getenv("HOME");
        if (!home_dir) {
            RCLCPP_ERROR(get_logger(), "HOME environment variable not set!");
            return;
        }
        
        std::string full_path = std::string(home_dir) + path;
        
        RCLCPP_INFO(get_logger(), "Starting save map thread for path: %s", full_path.c_str());
        
        // 直接启动保存线程,不等待激光数据
        if (saveMapThread.joinable()) {
            saveMapThread.join();
        }
        saveMapThread = std::thread(&mapOptimization::saveMapInThread, this, full_path, resolution);
        
        RCLCPP_INFO(get_logger(), "Save map thread started");
    }

  

    void allocateMemory()
    {
        cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
        cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());
        copy_cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
        copy_cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());

        kdtreeSurroundingKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());
        kdtreeHistoryKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());

        laserCloudCornerLast.reset(new pcl::PointCloud<PointType>()); // corner feature set from odoOptimization
        laserCloudSurfLast.reset(new pcl::PointCloud<PointType>()); // surf feature set from odoOptimization
        laserCloudCornerLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled corner featuer set from odoOptimization
        laserCloudSurfLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled surf featuer set from odoOptimization

        laserCloudOri.reset(new pcl::PointCloud<PointType>());
        coeffSel.reset(new pcl::PointCloud<PointType>());

        laserCloudOriCornerVec.resize(N_SCAN * Horizon_SCAN);
        coeffSelCornerVec.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriCornerFlag.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriSurfVec.resize(N_SCAN * Horizon_SCAN);
        coeffSelSurfVec.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriSurfFlag.resize(N_SCAN * Horizon_SCAN);

        std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
        std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);

        laserCloudCornerFromMap.reset(new pcl::PointCloud<PointType>());
        laserCloudSurfFromMap.reset(new pcl::PointCloud<PointType>());
        laserCloudCornerFromMapDS.reset(new pcl::PointCloud<PointType>());
        laserCloudSurfFromMapDS.reset(new pcl::PointCloud<PointType>());

        kdtreeCornerFromMap.reset(new pcl::KdTreeFLANN<PointType>());
        kdtreeSurfFromMap.reset(new pcl::KdTreeFLANN<PointType>());

        for (int i = 0; i < 6; ++i){
            transformTobeMapped[i] = 0;
        }

        matP.setZero();
    }

    void laserCloudInfoHandler(const lio_sam::msg::CloudInfo::SharedPtr msgIn)
    {
        // extract time stamp
        timeLaserInfoStamp = msgIn->header.stamp;
        timeLaserInfoCur = stamp2Sec(msgIn->header.stamp);

        // extract info and feature cloud
        cloudInfo = *msgIn;
        pcl::fromROSMsg(msgIn->cloud_corner,  *laserCloudCornerLast);
        pcl::fromROSMsg(msgIn->cloud_surface, *laserCloudSurfLast);

        std::lock_guard<std::mutex> lock(mtx);

        static double timeLastProcessing = -1;
        if (timeLaserInfoCur - timeLastProcessing >= mappingProcessInterval)
        {
            timeLastProcessing = timeLaserInfoCur;

            updateInitialGuess();

            extractSurroundingKeyFrames();

            downsampleCurrentScan();

            scan2MapOptimization();

            saveKeyFramesAndFactor();

            correctPoses();

            publishOdometry();

            publishFrames();

            // 检查保存地图请求
            //checkSaveMapRequest();
        }
    }

    void gpsHandler(const nav_msgs::msg::Odometry::SharedPtr gpsMsg)
    {
        gpsQueue.push_back(*gpsMsg);
    }

    void pointAssociateToMap(PointType const * const pi, PointType * const po)
    {
        po->x = transPointAssociateToMap(0,0) * pi->x + transPointAssociateToMap(0,1) * pi->y + transPointAssociateToMap(0,2) * pi->z + transPointAssociateToMap(0,3);
        po->y = transPointAssociateToMap(1,0) * pi->x + transPointAssociateToMap(1,1) * pi->y + transPointAssociateToMap(1,2) * pi->z + transPointAssociateToMap(1,3);
        po->z = transPointAssociateToMap(2,0) * pi->x + transPointAssociateToMap(2,1) * pi->y + transPointAssociateToMap(2,2) * pi->z + transPointAssociateToMap(2,3);
        po->intensity = pi->intensity;
    }

    pcl::PointCloud<PointType>::Ptr transformPointCloud(pcl::PointCloud<PointType>::Ptr cloudIn, PointTypePose* transformIn)
    {
        pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());

        int cloudSize = cloudIn->size();
        cloudOut->resize(cloudSize);

        Eigen::Affine3f transCur = pcl::getTransformation(transformIn->x, transformIn->y, transformIn->z, transformIn->roll, transformIn->pitch, transformIn->yaw);
        
        #pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < cloudSize; ++i)
        {
            const auto &pointFrom = cloudIn->points[i];
            cloudOut->points[i].x = transCur(0,0) * pointFrom.x + transCur(0,1) * pointFrom.y + transCur(0,2) * pointFrom.z + transCur(0,3);
            cloudOut->points[i].y = transCur(1,0) * pointFrom.x + transCur(1,1) * pointFrom.y + transCur(1,2) * pointFrom.z + transCur(1,3);
            cloudOut->points[i].z = transCur(2,0) * pointFrom.x + transCur(2,1) * pointFrom.y + transCur(2,2) * pointFrom.z + transCur(2,3);
            cloudOut->points[i].intensity = pointFrom.intensity;
        }
        return cloudOut;
    }

    gtsam::Pose3 pclPointTogtsamPose3(PointTypePose thisPoint)
    {
        return gtsam::Pose3(gtsam::Rot3::RzRyRx(double(thisPoint.roll), double(thisPoint.pitch), double(thisPoint.yaw)),
                                  gtsam::Point3(double(thisPoint.x),    double(thisPoint.y),     double(thisPoint.z)));
    }

    gtsam::Pose3 trans2gtsamPose(float transformIn[])
    {
        return gtsam::Pose3(gtsam::Rot3::RzRyRx(transformIn[0], transformIn[1], transformIn[2]), 
                                  gtsam::Point3(transformIn[3], transformIn[4], transformIn[5]));
    }

    Eigen::Affine3f pclPointToAffine3f(PointTypePose thisPoint)
    {
        return pcl::getTransformation(thisPoint.x, thisPoint.y, thisPoint.z, thisPoint.roll, thisPoint.pitch, thisPoint.yaw);
    }

    Eigen::Affine3f trans2Affine3f(float transformIn[])
    {
        return pcl::getTransformation(transformIn[3], transformIn[4], transformIn[5], transformIn[0], transformIn[1], transformIn[2]);
    }

    PointTypePose trans2PointTypePose(float transformIn[])
    {
        PointTypePose thisPose6D;
        thisPose6D.x = transformIn[3];
        thisPose6D.y = transformIn[4];
        thisPose6D.z = transformIn[5];
        thisPose6D.roll  = transformIn[0];
        thisPose6D.pitch = transformIn[1];
        thisPose6D.yaw   = transformIn[2];
        return thisPose6D;
    }

    void visualizeGlobalMapThread()
    {
        rclcpp::Rate rate(0.2);
        while (rclcpp::ok()){
            rate.sleep();
            publishGlobalMap();
        }
        if (savePCD == false)
            return;
        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files ..." << endl;
        savePCDDirectory = std::getenv("HOME") + savePCDDirectory;
        int unused = system((std::string("exec rm -r ") + savePCDDirectory).c_str());
        unused = system((std::string("mkdir ") + savePCDDirectory).c_str());
        pcl::io::savePCDFileASCII(savePCDDirectory + "trajectory.pcd", *cloudKeyPoses3D);
        pcl::io::savePCDFileASCII(savePCDDirectory + "transformations.pcd", *cloudKeyPoses6D);
        pcl::PointCloud<PointType>::Ptr globalCornerCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalCornerCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapCloud(new pcl::PointCloud<PointType>());
        for (int i = 0; i < (int)cloudKeyPoses3D->size(); i++) {
            *globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i],  &cloudKeyPoses6D->points[i]);
            *globalSurfCloud   += *transformPointCloud(surfCloudKeyFrames[i],    &cloudKeyPoses6D->points[i]);
            cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";
        }
        downSizeFilterCorner.setInputCloud(globalCornerCloud);
        downSizeFilterCorner.filter(*globalCornerCloudDS);
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudCorner.pcd", *globalCornerCloudDS);
        downSizeFilterSurf.setInputCloud(globalSurfCloud);
        downSizeFilterSurf.filter(*globalSurfCloudDS);
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudSurf.pcd", *globalSurfCloudDS);
        *globalMapCloud += *globalCornerCloud;
        *globalMapCloud += *globalSurfCloud;
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudGlobal.pcd", *globalMapCloud);
        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files completed" << endl;
    }

    void publishGlobalMap()
    {
        if (pubLaserCloudSurround->get_subscription_count() == 0)
            return;

        if (cloudKeyPoses3D->points.empty() == true)
            return;

        pcl::KdTreeFLANN<PointType>::Ptr kdtreeGlobalMap(new pcl::KdTreeFLANN<PointType>());;
        pcl::PointCloud<PointType>::Ptr globalMapKeyPoses(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyPosesDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyFrames(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyFramesDS(new pcl::PointCloud<PointType>());

        // kd-tree to find near key frames to visualize
        std::vector<int> pointSearchIndGlobalMap;
        std::vector<float> pointSearchSqDisGlobalMap;
        // search near key frames to visualize
        mtx.lock();
        kdtreeGlobalMap->setInputCloud(cloudKeyPoses3D);
        kdtreeGlobalMap->radiusSearch(cloudKeyPoses3D->back(), globalMapVisualizationSearchRadius, pointSearchIndGlobalMap, pointSearchSqDisGlobalMap, 0);
        mtx.unlock();

        for (int i = 0; i < (int)pointSearchIndGlobalMap.size(); ++i)
            globalMapKeyPoses->push_back(cloudKeyPoses3D->points[pointSearchIndGlobalMap[i]]);
        // downsample near selected key frames
        pcl::VoxelGrid<PointType> downSizeFilterGlobalMapKeyPoses; // for global map visualization
        downSizeFilterGlobalMapKeyPoses.setLeafSize(globalMapVisualizationPoseDensity, globalMapVisualizationPoseDensity, globalMapVisualizationPoseDensity); // for global map visualization
        downSizeFilterGlobalMapKeyPoses.setInputCloud(globalMapKeyPoses);
        downSizeFilterGlobalMapKeyPoses.filter(*globalMapKeyPosesDS);
        for(auto& pt : globalMapKeyPosesDS->points)
        {
            kdtreeGlobalMap->nearestKSearch(pt, 1, pointSearchIndGlobalMap, pointSearchSqDisGlobalMap);
            pt.intensity = cloudKeyPoses3D->points[pointSearchIndGlobalMap[0]].intensity;
        }

        // extract visualized and downsampled key frames
        for (int i = 0; i < (int)globalMapKeyPosesDS->size(); ++i){
            if (pointDistance(globalMapKeyPosesDS->points[i], cloudKeyPoses3D->back()) > globalMapVisualizationSearchRadius)
                continue;
            int thisKeyInd = (int)globalMapKeyPosesDS->points[i].intensity;
            *globalMapKeyFrames += *transformPointCloud(cornerCloudKeyFrames[thisKeyInd],  &cloudKeyPoses6D->points[thisKeyInd]);
            *globalMapKeyFrames += *transformPointCloud(surfCloudKeyFrames[thisKeyInd],    &cloudKeyPoses6D->points[thisKeyInd]);
        }
        // downsample visualized points
        pcl::VoxelGrid<PointType> downSizeFilterGlobalMapKeyFrames; // for global map visualization
        downSizeFilterGlobalMapKeyFrames.setLeafSize(globalMapVisualizationLeafSize, globalMapVisualizationLeafSize, globalMapVisualizationLeafSize); // for global map visualization
        downSizeFilterGlobalMapKeyFrames.setInputCloud(globalMapKeyFrames);
        downSizeFilterGlobalMapKeyFrames.filter(*globalMapKeyFramesDS);
        publishCloud(pubLaserCloudSurround, globalMapKeyFramesDS, timeLaserInfoStamp, odometryFrame);
    }












    void loopClosureThread()
    {
        if (loopClosureEnableFlag == false)
            return;

        rclcpp::Rate rate(loopClosureFrequency);
        while (rclcpp::ok())
        {
            rate.sleep();
            performLoopClosure();
            visualizeLoopClosure();
        }
    }

    void loopInfoHandler(const std_msgs::msg::Float64MultiArray::SharedPtr loopMsg)
    {
        std::lock_guard<std::mutex> lock(mtxLoopInfo);
        if (loopMsg->data.size() != 2)
            return;

        loopInfoVec.push_back(*loopMsg);

        while (loopInfoVec.size() > 5)
            loopInfoVec.pop_front();
    }

    void performLoopClosure()
    {
        if (cloudKeyPoses3D->points.empty() == true)
            return;

        mtx.lock();
        *copy_cloudKeyPoses3D = *cloudKeyPoses3D;
        *copy_cloudKeyPoses6D = *cloudKeyPoses6D;
        mtx.unlock();

        // find keys
        int loopKeyCur;
        int loopKeyPre;
        if (detectLoopClosureExternal(&loopKeyCur, &loopKeyPre) == false)
            if (detectLoopClosureDistance(&loopKeyCur, &loopKeyPre) == false)
                return;

        // extract cloud
        pcl::PointCloud<PointType>::Ptr cureKeyframeCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr prevKeyframeCloud(new pcl::PointCloud<PointType>());
        {
            loopFindNearKeyframes(cureKeyframeCloud, loopKeyCur, 0);
            loopFindNearKeyframes(prevKeyframeCloud, loopKeyPre, historyKeyframeSearchNum);
            if (cureKeyframeCloud->size() < 300 || prevKeyframeCloud->size() < 1000)
                return;
            if (pubHistoryKeyFrames->get_subscription_count() != 0)
                publishCloud(pubHistoryKeyFrames, prevKeyframeCloud, timeLaserInfoStamp, odometryFrame);
        }

        // ICP Settings
        static pcl::IterativeClosestPoint<PointType, PointType> icp;
        icp.setMaxCorrespondenceDistance(historyKeyframeSearchRadius*2);
        icp.setMaximumIterations(100);
        icp.setTransformationEpsilon(1e-6);
        icp.setEuclideanFitnessEpsilon(1e-6);
        icp.setRANSACIterations(0);

        // Align clouds
        icp.setInputSource(cureKeyframeCloud);
        icp.setInputTarget(prevKeyframeCloud);
        pcl::PointCloud<PointType>::Ptr unused_result(new pcl::PointCloud<PointType>());
        icp.align(*unused_result);

        if (icp.hasConverged() == false || icp.getFitnessScore() > historyKeyframeFitnessScore)
            return;

        // publish corrected cloud
        if (pubIcpKeyFrames->get_subscription_count() != 0)
        {
            pcl::PointCloud<PointType>::Ptr closed_cloud(new pcl::PointCloud<PointType>());
            pcl::transformPointCloud(*cureKeyframeCloud, *closed_cloud, icp.getFinalTransformation());
            publishCloud(pubIcpKeyFrames, closed_cloud, timeLaserInfoStamp, odometryFrame);
        }

        // Get pose transformation
        float x, y, z, roll, pitch, yaw;
        Eigen::Affine3f correctionLidarFrame;
        correctionLidarFrame = icp.getFinalTransformation();
        // transform from world origin to wrong pose
        Eigen::Affine3f tWrong = pclPointToAffine3f(copy_cloudKeyPoses6D->points[loopKeyCur]);
        // transform from world origin to corrected pose
        Eigen::Affine3f tCorrect = correctionLidarFrame * tWrong;// pre-multiplying -> successive rotation about a fixed frame
        pcl::getTranslationAndEulerAngles (tCorrect, x, y, z, roll, pitch, yaw);
        gtsam::Pose3 poseFrom = Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z));
        gtsam::Pose3 poseTo = pclPointTogtsamPose3(copy_cloudKeyPoses6D->points[loopKeyPre]);
        gtsam::Vector Vector6(6);
        float noiseScore = icp.getFitnessScore();
        Vector6 << noiseScore, noiseScore, noiseScore, noiseScore, noiseScore, noiseScore;
        noiseModel::Diagonal::shared_ptr constraintNoise = noiseModel::Diagonal::Variances(Vector6);

        // Add pose constraint
        mtx.lock();
        loopIndexQueue.push_back(make_pair(loopKeyCur, loopKeyPre));
        loopPoseQueue.push_back(poseFrom.between(poseTo));
        loopNoiseQueue.push_back(constraintNoise);
        mtx.unlock();

        // add loop constriant
        loopIndexContainer[loopKeyCur] = loopKeyPre;
    }

    bool detectLoopClosureDistance(int *latestID, int *closestID)
    {
        int loopKeyCur = copy_cloudKeyPoses3D->size() - 1;
        int loopKeyPre = -1;

        // check loop constraint added before
        auto it = loopIndexContainer.find(loopKeyCur);
        if (it != loopIndexContainer.end())
            return false;

        // find the closest history key frame
        std::vector<int> pointSearchIndLoop;
        std::vector<float> pointSearchSqDisLoop;
        kdtreeHistoryKeyPoses->setInputCloud(copy_cloudKeyPoses3D);
        kdtreeHistoryKeyPoses->radiusSearch(copy_cloudKeyPoses3D->back(), historyKeyframeSearchRadius, pointSearchIndLoop, pointSearchSqDisLoop, 0);
        
        for (int i = 0; i < (int)pointSearchIndLoop.size(); ++i)
        {
            int id = pointSearchIndLoop[i];
            if (abs(copy_cloudKeyPoses6D->points[id].time - timeLaserInfoCur) > historyKeyframeSearchTimeDiff)
            {
                loopKeyPre = id;
                break;
            }
        }

        if (loopKeyPre == -1 || loopKeyCur == loopKeyPre)
            return false;

        *latestID = loopKeyCur;
        *closestID = loopKeyPre;

        return true;
    }

    bool detectLoopClosureExternal(int *latestID, int *closestID)
    {
        // this function is not used yet, please ignore it
        int loopKeyCur = -1;
        int loopKeyPre = -1;

        std::lock_guard<std::mutex> lock(mtxLoopInfo);
        if (loopInfoVec.empty())
            return false;

        double loopTimeCur = loopInfoVec.front().data[0];
        double loopTimePre = loopInfoVec.front().data[1];
        loopInfoVec.pop_front();

        if (abs(loopTimeCur - loopTimePre) < historyKeyframeSearchTimeDiff)
            return false;

        int cloudSize = copy_cloudKeyPoses6D->size();
        if (cloudSize < 2)
            return false;

        // latest key
        loopKeyCur = cloudSize - 1;
        for (int i = cloudSize - 1; i >= 0; --i)
        {
            if (copy_cloudKeyPoses6D->points[i].time >= loopTimeCur)
                loopKeyCur = round(copy_cloudKeyPoses6D->points[i].intensity);
            else
                break;
        }

        // previous key
        loopKeyPre = 0;
        for (int i = 0; i < cloudSize; ++i)
        {
            if (copy_cloudKeyPoses6D->points[i].time <= loopTimePre)
                loopKeyPre = round(copy_cloudKeyPoses6D->points[i].intensity);
            else
                break;
        }

        if (loopKeyCur == loopKeyPre)
            return false;

        auto it = loopIndexContainer.find(loopKeyCur);
        if (it != loopIndexContainer.end())
            return false;

        *latestID = loopKeyCur;
        *closestID = loopKeyPre;

        return true;
    }

    void loopFindNearKeyframes(pcl::PointCloud<PointType>::Ptr& nearKeyframes, const int& key, const int& searchNum)
    {
        // extract near keyframes
        nearKeyframes->clear();
        int cloudSize = copy_cloudKeyPoses6D->size();
        for (int i = -searchNum; i <= searchNum; ++i)
        {
            int keyNear = key + i;
            if (keyNear < 0 || keyNear >= cloudSize )
                continue;
            *nearKeyframes += *transformPointCloud(cornerCloudKeyFrames[keyNear], &copy_cloudKeyPoses6D->points[keyNear]);
            *nearKeyframes += *transformPointCloud(surfCloudKeyFrames[keyNear],   &copy_cloudKeyPoses6D->points[keyNear]);
        }

        if (nearKeyframes->empty())
            return;

        // downsample near keyframes
        pcl::PointCloud<PointType>::Ptr cloud_temp(new pcl::PointCloud<PointType>());
        downSizeFilterICP.setInputCloud(nearKeyframes);
        downSizeFilterICP.filter(*cloud_temp);
        *nearKeyframes = *cloud_temp;
    }

    void visualizeLoopClosure()
    {
        if (loopIndexContainer.empty())
            return;

        visualization_msgs::msg::MarkerArray markerArray;
        // loop nodes
        visualization_msgs::msg::Marker markerNode;
        markerNode.header.frame_id = odometryFrame;
        markerNode.header.stamp = timeLaserInfoStamp;
        markerNode.action = visualization_msgs::msg::Marker::ADD;
        markerNode.type = visualization_msgs::msg::Marker::SPHERE_LIST;
        markerNode.ns = "loop_nodes";
        markerNode.id = 0;
        markerNode.pose.orientation.w = 1;
        markerNode.scale.x = 0.3; markerNode.scale.y = 0.3; markerNode.scale.z = 0.3; 
        markerNode.color.r = 0; markerNode.color.g = 0.8; markerNode.color.b = 1;
        markerNode.color.a = 1;
        // loop edges
        visualization_msgs::msg::Marker markerEdge;
        markerEdge.header.frame_id = odometryFrame;
        markerEdge.header.stamp = timeLaserInfoStamp;
        markerEdge.action = visualization_msgs::msg::Marker::ADD;
        markerEdge.type = visualization_msgs::msg::Marker::LINE_LIST;
        markerEdge.ns = "loop_edges";
        markerEdge.id = 1;
        markerEdge.pose.orientation.w = 1;
        markerEdge.scale.x = 0.1;
        markerEdge.color.r = 0.9; markerEdge.color.g = 0.9; markerEdge.color.b = 0;
        markerEdge.color.a = 1;

        for (auto it = loopIndexContainer.begin(); it != loopIndexContainer.end(); ++it)
        {
            int key_cur = it->first;
            int key_pre = it->second;
            geometry_msgs::msg::Point p;
            p.x = copy_cloudKeyPoses6D->points[key_cur].x;
            p.y = copy_cloudKeyPoses6D->points[key_cur].y;
            p.z = copy_cloudKeyPoses6D->points[key_cur].z;
            markerNode.points.push_back(p);
            markerEdge.points.push_back(p);
            p.x = copy_cloudKeyPoses6D->points[key_pre].x;
            p.y = copy_cloudKeyPoses6D->points[key_pre].y;
            p.z = copy_cloudKeyPoses6D->points[key_pre].z;
            markerNode.points.push_back(p);
            markerEdge.points.push_back(p);
        }

        markerArray.markers.push_back(markerNode);
        markerArray.markers.push_back(markerEdge);
        pubLoopConstraintEdge->publish(markerArray);
    }







    



    void updateInitialGuess()
    {
        // save current transformation before any processing
        incrementalOdometryAffineFront = trans2Affine3f(transformTobeMapped);

        static Eigen::Affine3f lastImuTransformation;
        // initialization
        if (cloudKeyPoses3D->points.empty())
        {
            transformTobeMapped[0] = cloudInfo.imu_roll_init;
            transformTobeMapped[1] = cloudInfo.imu_pitch_init;
            transformTobeMapped[2] = cloudInfo.imu_yaw_init;

            if (!useImuHeadingInitialization)
                transformTobeMapped[2] = 0;

            lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imu_roll_init, cloudInfo.imu_pitch_init, cloudInfo.imu_yaw_init); // save imu before return;
            return;
        }

        // use imu pre-integration estimation for pose guess
        static bool lastImuPreTransAvailable = false;
        static Eigen::Affine3f lastImuPreTransformation;
        if (cloudInfo.odom_available == true)
        {
            Eigen::Affine3f transBack = pcl::getTransformation(
                cloudInfo.initial_guess_x, cloudInfo.initial_guess_y, cloudInfo.initial_guess_z,
                cloudInfo.initial_guess_roll, cloudInfo.initial_guess_pitch, cloudInfo.initial_guess_yaw);
            if (lastImuPreTransAvailable == false)
            {
                lastImuPreTransformation = transBack;
                lastImuPreTransAvailable = true;
            } else {
                Eigen::Affine3f transIncre = lastImuPreTransformation.inverse() * transBack;
                Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
                Eigen::Affine3f transFinal = transTobe * transIncre;
                pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5], 
                                                              transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);

                lastImuPreTransformation = transBack;

                lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imu_roll_init, cloudInfo.imu_pitch_init, cloudInfo.imu_yaw_init); // save imu before return;
                return;
            }
        }

        // use imu incremental estimation for pose guess (only rotation)
        if (cloudInfo.imu_available == true)
        {
            Eigen::Affine3f transBack = pcl::getTransformation(0, 0, 0, cloudInfo.imu_roll_init, cloudInfo.imu_pitch_init, cloudInfo.imu_yaw_init);
            Eigen::Affine3f transIncre = lastImuTransformation.inverse() * transBack;

            Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
            Eigen::Affine3f transFinal = transTobe * transIncre;
            pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5], 
                                                          transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);

            lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imu_roll_init, cloudInfo.imu_pitch_init, cloudInfo.imu_yaw_init); // save imu before return;
            return;
        }
    }

    void extractForLoopClosure()
    {
        pcl::PointCloud<PointType>::Ptr cloudToExtract(new pcl::PointCloud<PointType>());
        int numPoses = cloudKeyPoses3D->size();
        for (int i = numPoses-1; i >= 0; --i)
        {
            if ((int)cloudToExtract->size() <= surroundingKeyframeSize)
                cloudToExtract->push_back(cloudKeyPoses3D->points[i]);
            else
                break;
        }

        extractCloud(cloudToExtract);
    }

    void extractNearby()
    {
        pcl::PointCloud<PointType>::Ptr surroundingKeyPoses(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr surroundingKeyPosesDS(new pcl::PointCloud<PointType>());
        std::vector<int> pointSearchInd;
        std::vector<float> pointSearchSqDis;

        // extract all the nearby key poses and downsample them
        kdtreeSurroundingKeyPoses->setInputCloud(cloudKeyPoses3D); // create kd-tree
        kdtreeSurroundingKeyPoses->radiusSearch(cloudKeyPoses3D->back(), (double)surroundingKeyframeSearchRadius, pointSearchInd, pointSearchSqDis);
        for (int i = 0; i < (int)pointSearchInd.size(); ++i)
        {
            int id = pointSearchInd[i];
            surroundingKeyPoses->push_back(cloudKeyPoses3D->points[id]);
        }

        downSizeFilterSurroundingKeyPoses.setInputCloud(surroundingKeyPoses);
        downSizeFilterSurroundingKeyPoses.filter(*surroundingKeyPosesDS);
        for(auto& pt : surroundingKeyPosesDS->points)
        {
            kdtreeSurroundingKeyPoses->nearestKSearch(pt, 1, pointSearchInd, pointSearchSqDis);
            pt.intensity = cloudKeyPoses3D->points[pointSearchInd[0]].intensity;
        }

        // also extract some latest key frames in case the robot rotates in one position
        int numPoses = cloudKeyPoses3D->size();
        for (int i = numPoses-1; i >= 0; --i)
        {
            if (timeLaserInfoCur - cloudKeyPoses6D->points[i].time < 10.0)
                surroundingKeyPosesDS->push_back(cloudKeyPoses3D->points[i]);
            else
                break;
        }

        extractCloud(surroundingKeyPosesDS);
    }

    void extractCloud(pcl::PointCloud<PointType>::Ptr cloudToExtract)
    {
        // fuse the map
        laserCloudCornerFromMap->clear();
        laserCloudSurfFromMap->clear(); 
        for (int i = 0; i < (int)cloudToExtract->size(); ++i)
        {
            if (pointDistance(cloudToExtract->points[i], cloudKeyPoses3D->back()) > surroundingKeyframeSearchRadius)
                continue;

            int thisKeyInd = (int)cloudToExtract->points[i].intensity;
            if (laserCloudMapContainer.find(thisKeyInd) != laserCloudMapContainer.end()) 
            {
                // transformed cloud available
                *laserCloudCornerFromMap += laserCloudMapContainer[thisKeyInd].first;
                *laserCloudSurfFromMap   += laserCloudMapContainer[thisKeyInd].second;
            } else {
                // transformed cloud not available
                pcl::PointCloud<PointType> laserCloudCornerTemp = *transformPointCloud(cornerCloudKeyFrames[thisKeyInd],  &cloudKeyPoses6D->points[thisKeyInd]);
                pcl::PointCloud<PointType> laserCloudSurfTemp = *transformPointCloud(surfCloudKeyFrames[thisKeyInd],    &cloudKeyPoses6D->points[thisKeyInd]);
                *laserCloudCornerFromMap += laserCloudCornerTemp;
                *laserCloudSurfFromMap   += laserCloudSurfTemp;
                laserCloudMapContainer[thisKeyInd] = make_pair(laserCloudCornerTemp, laserCloudSurfTemp);
            }
            
        }

        // Downsample the surrounding corner key frames (or map)
        downSizeFilterCorner.setInputCloud(laserCloudCornerFromMap);
        downSizeFilterCorner.filter(*laserCloudCornerFromMapDS);
        laserCloudCornerFromMapDSNum = laserCloudCornerFromMapDS->size();
        // Downsample the surrounding surf key frames (or map)
        downSizeFilterSurf.setInputCloud(laserCloudSurfFromMap);
        downSizeFilterSurf.filter(*laserCloudSurfFromMapDS);
        laserCloudSurfFromMapDSNum = laserCloudSurfFromMapDS->size();

        // clear map cache if too large
        if (laserCloudMapContainer.size() > 1000)
            laserCloudMapContainer.clear();
    }

    void extractSurroundingKeyFrames()
    {
        if (cloudKeyPoses3D->points.empty() == true)
            return; 
        
        // if (loopClosureEnableFlag == true)
        // {
        //     extractForLoopClosure();    
        // } else {
        //     extractNearby();
        // }

        extractNearby();
    }

    void downsampleCurrentScan()
    {
        // Downsample cloud from current scan
        laserCloudCornerLastDS->clear();
        downSizeFilterCorner.setInputCloud(laserCloudCornerLast);
        downSizeFilterCorner.filter(*laserCloudCornerLastDS);
        laserCloudCornerLastDSNum = laserCloudCornerLastDS->size();

        laserCloudSurfLastDS->clear();
        downSizeFilterSurf.setInputCloud(laserCloudSurfLast);
        downSizeFilterSurf.filter(*laserCloudSurfLastDS);
        laserCloudSurfLastDSNum = laserCloudSurfLastDS->size();
    }

    void updatePointAssociateToMap()
    {
        transPointAssociateToMap = trans2Affine3f(transformTobeMapped);
    }

    void cornerOptimization()
    {
        updatePointAssociateToMap();

        #pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < laserCloudCornerLastDSNum; i++)
        {
            PointType pointOri, pointSel, coeff;
            std::vector<int> pointSearchInd;
            std::vector<float> pointSearchSqDis;

            pointOri = laserCloudCornerLastDS->points[i];
            pointAssociateToMap(&pointOri, &pointSel);
            kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

            cv::Mat matA1(3, 3, CV_32F, cv::Scalar::all(0));
            cv::Mat matD1(1, 3, CV_32F, cv::Scalar::all(0));
            cv::Mat matV1(3, 3, CV_32F, cv::Scalar::all(0));
                    
            if (pointSearchSqDis[4] < 1.0) {
                float cx = 0, cy = 0, cz = 0;
                for (int j = 0; j < 5; j++) {
                    cx += laserCloudCornerFromMapDS->points[pointSearchInd[j]].x;
                    cy += laserCloudCornerFromMapDS->points[pointSearchInd[j]].y;
                    cz += laserCloudCornerFromMapDS->points[pointSearchInd[j]].z;
                }
                cx /= 5; cy /= 5;  cz /= 5;

                float a11 = 0, a12 = 0, a13 = 0, a22 = 0, a23 = 0, a33 = 0;
                for (int j = 0; j < 5; j++) {
                    float ax = laserCloudCornerFromMapDS->points[pointSearchInd[j]].x - cx;
                    float ay = laserCloudCornerFromMapDS->points[pointSearchInd[j]].y - cy;
                    float az = laserCloudCornerFromMapDS->points[pointSearchInd[j]].z - cz;

                    a11 += ax * ax; a12 += ax * ay; a13 += ax * az;
                    a22 += ay * ay; a23 += ay * az;
                    a33 += az * az;
                }
                a11 /= 5; a12 /= 5; a13 /= 5; a22 /= 5; a23 /= 5; a33 /= 5;

                matA1.at<float>(0, 0) = a11; matA1.at<float>(0, 1) = a12; matA1.at<float>(0, 2) = a13;
                matA1.at<float>(1, 0) = a12; matA1.at<float>(1, 1) = a22; matA1.at<float>(1, 2) = a23;
                matA1.at<float>(2, 0) = a13; matA1.at<float>(2, 1) = a23; matA1.at<float>(2, 2) = a33;

                cv::eigen(matA1, matD1, matV1);

                if (matD1.at<float>(0, 0) > 3 * matD1.at<float>(0, 1)) {

                    float x0 = pointSel.x;
                    float y0 = pointSel.y;
                    float z0 = pointSel.z;
                    float x1 = cx + 0.1 * matV1.at<float>(0, 0);
                    float y1 = cy + 0.1 * matV1.at<float>(0, 1);
                    float z1 = cz + 0.1 * matV1.at<float>(0, 2);
                    float x2 = cx - 0.1 * matV1.at<float>(0, 0);
                    float y2 = cy - 0.1 * matV1.at<float>(0, 1);
                    float z2 = cz - 0.1 * matV1.at<float>(0, 2);

                    float a012 = sqrt(((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) * ((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                                    + ((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) * ((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) 
                                    + ((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1)) * ((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1)));

                    float l12 = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2) + (z1 - z2)*(z1 - z2));

                    float la = ((y1 - y2)*((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                              + (z1 - z2)*((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1))) / a012 / l12;

                    float lb = -((x1 - x2)*((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                               - (z1 - z2)*((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1))) / a012 / l12;

                    float lc = -((x1 - x2)*((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) 
                               + (y1 - y2)*((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1))) / a012 / l12;

                    float ld2 = a012 / l12;

                    float s = 1 - 0.9 * fabs(ld2);

                    coeff.x = s * la;
                    coeff.y = s * lb;
                    coeff.z = s * lc;
                    coeff.intensity = s * ld2;

                    if (s > 0.1) {
                        laserCloudOriCornerVec[i] = pointOri;
                        coeffSelCornerVec[i] = coeff;
                        laserCloudOriCornerFlag[i] = true;
                    }
                }
            }
        }
    }

    void surfOptimization()
    {
        updatePointAssociateToMap();

        #pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < laserCloudSurfLastDSNum; i++)
        {
            PointType pointOri, pointSel, coeff;
            std::vector<int> pointSearchInd;
            std::vector<float> pointSearchSqDis;

            pointOri = laserCloudSurfLastDS->points[i];
            pointAssociateToMap(&pointOri, &pointSel); 
            kdtreeSurfFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

            Eigen::Matrix<float, 5, 3> matA0;
            Eigen::Matrix<float, 5, 1> matB0;
            Eigen::Vector3f matX0;

            matA0.setZero();
            matB0.fill(-1);
            matX0.setZero();

            if (pointSearchSqDis[4] < 1.0) {
                for (int j = 0; j < 5; j++) {
                    matA0(j, 0) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].x;
                    matA0(j, 1) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].y;
                    matA0(j, 2) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].z;
                }

                matX0 = matA0.colPivHouseholderQr().solve(matB0);

                float pa = matX0(0, 0);
                float pb = matX0(1, 0);
                float pc = matX0(2, 0);
                float pd = 1;

                float ps = sqrt(pa * pa + pb * pb + pc * pc);
                pa /= ps; pb /= ps; pc /= ps; pd /= ps;

                bool planeValid = true;
                for (int j = 0; j < 5; j++) {
                    if (fabs(pa * laserCloudSurfFromMapDS->points[pointSearchInd[j]].x +
                             pb * laserCloudSurfFromMapDS->points[pointSearchInd[j]].y +
                             pc * laserCloudSurfFromMapDS->points[pointSearchInd[j]].z + pd) > 0.2) {
                        planeValid = false;
                        break;
                    }
                }

                if (planeValid) {
                    float pd2 = pa * pointSel.x + pb * pointSel.y + pc * pointSel.z + pd;

                    float s = 1 - 0.9 * fabs(pd2) / sqrt(sqrt(pointOri.x * pointOri.x
                            + pointOri.y * pointOri.y + pointOri.z * pointOri.z));

                    coeff.x = s * pa;
                    coeff.y = s * pb;
                    coeff.z = s * pc;
                    coeff.intensity = s * pd2;

                    if (s > 0.1) {
                        laserCloudOriSurfVec[i] = pointOri;
                        coeffSelSurfVec[i] = coeff;
                        laserCloudOriSurfFlag[i] = true;
                    }
                }
            }
        }
    }

    void combineOptimizationCoeffs()
    {
        // combine corner coeffs
        for (int i = 0; i < laserCloudCornerLastDSNum; ++i){
            if (laserCloudOriCornerFlag[i] == true){
                laserCloudOri->push_back(laserCloudOriCornerVec[i]);
                coeffSel->push_back(coeffSelCornerVec[i]);
            }
        }
        // combine surf coeffs
        for (int i = 0; i < laserCloudSurfLastDSNum; ++i){
            if (laserCloudOriSurfFlag[i] == true){
                laserCloudOri->push_back(laserCloudOriSurfVec[i]);
                coeffSel->push_back(coeffSelSurfVec[i]);
            }
        }
        // reset flag for next iteration
        std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
        std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);
    }

    bool LMOptimization(int iterCount)
    {
        // This optimization is from the original loam_velodyne by Ji Zhang, need to cope with coordinate transformation
        // lidar <- camera      ---     camera <- lidar
        // x = z                ---     x = y
        // y = x                ---     y = z
        // z = y                ---     z = x
        // roll = yaw           ---     roll = pitch
        // pitch = roll         ---     pitch = yaw
        // yaw = pitch          ---     yaw = roll

        // lidar -> camera
        float srx = sin(transformTobeMapped[1]);
        float crx = cos(transformTobeMapped[1]);
        float sry = sin(transformTobeMapped[2]);
        float cry = cos(transformTobeMapped[2]);
        float srz = sin(transformTobeMapped[0]);
        float crz = cos(transformTobeMapped[0]);

        int laserCloudSelNum = laserCloudOri->size();
        if (laserCloudSelNum < 50) {
            return false;
        }

        cv::Mat matA(laserCloudSelNum, 6, CV_32F, cv::Scalar::all(0));
        cv::Mat matAt(6, laserCloudSelNum, CV_32F, cv::Scalar::all(0));
        cv::Mat matAtA(6, 6, CV_32F, cv::Scalar::all(0));
        cv::Mat matB(laserCloudSelNum, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matAtB(6, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matX(6, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matP(6, 6, CV_32F, cv::Scalar::all(0));

        PointType pointOri, coeff;

        for (int i = 0; i < laserCloudSelNum; i++) {
            // lidar -> camera
            pointOri.x = laserCloudOri->points[i].y;
            pointOri.y = laserCloudOri->points[i].z;
            pointOri.z = laserCloudOri->points[i].x;
            // lidar -> camera
            coeff.x = coeffSel->points[i].y;
            coeff.y = coeffSel->points[i].z;
            coeff.z = coeffSel->points[i].x;
            coeff.intensity = coeffSel->points[i].intensity;
            // in camera
            float arx = (crx*sry*srz*pointOri.x + crx*crz*sry*pointOri.y - srx*sry*pointOri.z) * coeff.x
                      + (-srx*srz*pointOri.x - crz*srx*pointOri.y - crx*pointOri.z) * coeff.y
                      + (crx*cry*srz*pointOri.x + crx*cry*crz*pointOri.y - cry*srx*pointOri.z) * coeff.z;

            float ary = ((cry*srx*srz - crz*sry)*pointOri.x 
                      + (sry*srz + cry*crz*srx)*pointOri.y + crx*cry*pointOri.z) * coeff.x
                      + ((-cry*crz - srx*sry*srz)*pointOri.x 
                      + (cry*srz - crz*srx*sry)*pointOri.y - crx*sry*pointOri.z) * coeff.z;

            float arz = ((crz*srx*sry - cry*srz)*pointOri.x + (-cry*crz-srx*sry*srz)*pointOri.y)*coeff.x
                      + (crx*crz*pointOri.x - crx*srz*pointOri.y) * coeff.y
                      + ((sry*srz + cry*crz*srx)*pointOri.x + (crz*sry-cry*srx*srz)*pointOri.y)*coeff.z;
            // lidar -> camera
            matA.at<float>(i, 0) = arz;
            matA.at<float>(i, 1) = arx;
            matA.at<float>(i, 2) = ary;
            matA.at<float>(i, 3) = coeff.z;
            matA.at<float>(i, 4) = coeff.x;
            matA.at<float>(i, 5) = coeff.y;
            matB.at<float>(i, 0) = -coeff.intensity;
        }

        cv::transpose(matA, matAt);
        matAtA = matAt * matA;
        matAtB = matAt * matB;
        cv::solve(matAtA, matAtB, matX, cv::DECOMP_QR);

        if (iterCount == 0) {

            cv::Mat matE(1, 6, CV_32F, cv::Scalar::all(0));
            cv::Mat matV(6, 6, CV_32F, cv::Scalar::all(0));
            cv::Mat matV2(6, 6, CV_32F, cv::Scalar::all(0));

            cv::eigen(matAtA, matE, matV);
            matV.copyTo(matV2);

            isDegenerate = false;
            float eignThre[6] = {100, 100, 100, 100, 100, 100};
            for (int i = 5; i >= 0; i--) {
                if (matE.at<float>(0, i) < eignThre[i]) {
                    for (int j = 0; j < 6; j++) {
                        matV2.at<float>(i, j) = 0;
                    }
                    isDegenerate = true;
                } else {
                    break;
                }
            }
            matP = matV.inv() * matV2;
        }

        if (isDegenerate)
        {
            cv::Mat matX2(6, 1, CV_32F, cv::Scalar::all(0));
            matX.copyTo(matX2);
            matX = matP * matX2;
        }

        transformTobeMapped[0] += matX.at<float>(0, 0);
        transformTobeMapped[1] += matX.at<float>(1, 0);
        transformTobeMapped[2] += matX.at<float>(2, 0);
        transformTobeMapped[3] += matX.at<float>(3, 0);
        transformTobeMapped[4] += matX.at<float>(4, 0);
        transformTobeMapped[5] += matX.at<float>(5, 0);

        float deltaR = sqrt(
                            pow(pcl::rad2deg(matX.at<float>(0, 0)), 2) +
                            pow(pcl::rad2deg(matX.at<float>(1, 0)), 2) +
                            pow(pcl::rad2deg(matX.at<float>(2, 0)), 2));
        float deltaT = sqrt(
                            pow(matX.at<float>(3, 0) * 100, 2) +
                            pow(matX.at<float>(4, 0) * 100, 2) +
                            pow(matX.at<float>(5, 0) * 100, 2));

        if (deltaR < 0.05 && deltaT < 0.05) {
            return true; // converged
        }
        return false; // keep optimizing
    }

    void scan2MapOptimization()
    {
        if (cloudKeyPoses3D->points.empty())
            return;

        if (laserCloudCornerLastDSNum > edgeFeatureMinValidNum && laserCloudSurfLastDSNum > surfFeatureMinValidNum)
        {
            kdtreeCornerFromMap->setInputCloud(laserCloudCornerFromMapDS);
            kdtreeSurfFromMap->setInputCloud(laserCloudSurfFromMapDS);

            for (int iterCount = 0; iterCount < 30; iterCount++)
            {
                laserCloudOri->clear();
                coeffSel->clear();

                cornerOptimization();
                surfOptimization();

                combineOptimizationCoeffs();

                if (LMOptimization(iterCount) == true)
                    break;              
            }

            transformUpdate();
        } else {
            RCLCPP_WARN(get_logger(), "Not enough features! Only %d edge and %d planar features available.", laserCloudCornerLastDSNum, laserCloudSurfLastDSNum);
        }
    }

    void transformUpdate()
    {
        if (cloudInfo.imu_available == true)
        {
            if (std::abs(cloudInfo.imu_pitch_init) < 1.4)
            {
                double imuWeight = imuRPYWeight;
                tf2::Quaternion imuQuaternion;
                tf2::Quaternion transformQuaternion;
                double rollMid, pitchMid, yawMid;

                // slerp roll
                transformQuaternion.setRPY(transformTobeMapped[0], 0, 0);
                imuQuaternion.setRPY(cloudInfo.imu_roll_init, 0, 0);
                tf2::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                transformTobeMapped[0] = rollMid;

                // slerp pitch
                transformQuaternion.setRPY(0, transformTobeMapped[1], 0);
                imuQuaternion.setRPY(0, cloudInfo.imu_pitch_init, 0);
                tf2::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                transformTobeMapped[1] = pitchMid;
            }
        }

        transformTobeMapped[0] = constraintTransformation(transformTobeMapped[0], rotation_tollerance);
        transformTobeMapped[1] = constraintTransformation(transformTobeMapped[1], rotation_tollerance);
        transformTobeMapped[5] = constraintTransformation(transformTobeMapped[5], z_tollerance);

        incrementalOdometryAffineBack = trans2Affine3f(transformTobeMapped);
    }

    float constraintTransformation(float value, float limit)
    {
        if (value < -limit)
            value = -limit;
        if (value > limit)
            value = limit;

        return value;
    }

    bool saveFrame()
    {
        if (cloudKeyPoses3D->points.empty())
            return true;

        if (sensor == SensorType::LIVOX)
        {
            if (timeLaserInfoCur - cloudKeyPoses6D->back().time > 1.0)
                return true;
        }

        Eigen::Affine3f transStart = pclPointToAffine3f(cloudKeyPoses6D->back());
        Eigen::Affine3f transFinal = pcl::getTransformation(transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5], 
                                                            transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
        Eigen::Affine3f transBetween = transStart.inverse() * transFinal;
        float x, y, z, roll, pitch, yaw;
        pcl::getTranslationAndEulerAngles(transBetween, x, y, z, roll, pitch, yaw);

        if (abs(roll)  < surroundingkeyframeAddingAngleThreshold &&
            abs(pitch) < surroundingkeyframeAddingAngleThreshold &&
            abs(yaw)   < surroundingkeyframeAddingAngleThreshold &&
            sqrt(x*x + y*y + z*z) < surroundingkeyframeAddingDistThreshold)
            return false;

        return true;
    }

    void addOdomFactor()
    {
        if (cloudKeyPoses3D->points.empty())
        {
            noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-2, 1e-2, M_PI*M_PI, 1e8, 1e8, 1e8).finished()); // rad*rad, meter*meter
            gtSAMgraph.add(PriorFactor<Pose3>(0, trans2gtsamPose(transformTobeMapped), priorNoise));
            initialEstimate.insert(0, trans2gtsamPose(transformTobeMapped));
        }else{
            noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
            gtsam::Pose3 poseFrom = pclPointTogtsamPose3(cloudKeyPoses6D->points.back());
            gtsam::Pose3 poseTo   = trans2gtsamPose(transformTobeMapped);
            gtSAMgraph.add(BetweenFactor<Pose3>(cloudKeyPoses3D->size()-1, cloudKeyPoses3D->size(), poseFrom.between(poseTo), odometryNoise));
            initialEstimate.insert(cloudKeyPoses3D->size(), poseTo);
        }
    }

    void addGPSFactor()
    {
        if (gpsQueue.empty())
            return;

        // wait for system initialized and settles down
        if (cloudKeyPoses3D->points.empty())
            return;
        else
        {
            if (pointDistance(cloudKeyPoses3D->front(), cloudKeyPoses3D->back()) < 5.0)
                return;
        }

        // pose covariance small, no need to correct
        if (poseCovariance(3,3) < poseCovThreshold && poseCovariance(4,4) < poseCovThreshold)
            return;

        // last gps position
        static PointType lastGPSPoint;

        while (!gpsQueue.empty())
        {
            if (stamp2Sec(gpsQueue.front().header.stamp) < timeLaserInfoCur - 0.2)
            {
                // message too old
                gpsQueue.pop_front();
            }
            else if (stamp2Sec(gpsQueue.front().header.stamp) > timeLaserInfoCur + 0.2)
            {
                // message too new
                break;
            }
            else
            {
                nav_msgs::msg::Odometry thisGPS = gpsQueue.front();
                gpsQueue.pop_front();

                // GPS too noisy, skip
                float noise_x = thisGPS.pose.covariance[0];
                float noise_y = thisGPS.pose.covariance[7];
                float noise_z = thisGPS.pose.covariance[14];
                if (noise_x > gpsCovThreshold || noise_y > gpsCovThreshold)
                    continue;
                float gps_x = thisGPS.pose.pose.position.x;
                float gps_y = thisGPS.pose.pose.position.y;
                float gps_z = thisGPS.pose.pose.position.z;
                if (!useGpsElevation)
                {
                    gps_z = transformTobeMapped[5];
                    noise_z = 0.01;
                }

                // GPS not properly initialized (0,0,0)
                if (abs(gps_x) < 1e-6 && abs(gps_y) < 1e-6)
                    continue;

                // Add GPS every a few meters
                PointType curGPSPoint;
                curGPSPoint.x = gps_x;
                curGPSPoint.y = gps_y;
                curGPSPoint.z = gps_z;
                if (pointDistance(curGPSPoint, lastGPSPoint) < 5.0)
                    continue;
                else
                    lastGPSPoint = curGPSPoint;

                gtsam::Vector Vector3(3);
                Vector3 << max(noise_x, 1.0f), max(noise_y, 1.0f), max(noise_z, 1.0f);
                noiseModel::Diagonal::shared_ptr gps_noise = noiseModel::Diagonal::Variances(Vector3);
                gtsam::GPSFactor gps_factor(cloudKeyPoses3D->size(), gtsam::Point3(gps_x, gps_y, gps_z), gps_noise);
                gtSAMgraph.add(gps_factor);

                aLoopIsClosed = true;
                break;
            }
        }
    }

    void addLoopFactor()
    {
        if (loopIndexQueue.empty())
            return;

        for (int i = 0; i < (int)loopIndexQueue.size(); ++i)
        {
            int indexFrom = loopIndexQueue[i].first;
            int indexTo = loopIndexQueue[i].second;
            gtsam::Pose3 poseBetween = loopPoseQueue[i];
            gtsam::noiseModel::Diagonal::shared_ptr noiseBetween = loopNoiseQueue[i];
            gtSAMgraph.add(BetweenFactor<Pose3>(indexFrom, indexTo, poseBetween, noiseBetween));
        }

        loopIndexQueue.clear();
        loopPoseQueue.clear();
        loopNoiseQueue.clear();
        aLoopIsClosed = true;
    }

    void saveKeyFramesAndFactor()
    {
        if (saveFrame() == false)
            return;

        // odom factor
        addOdomFactor();

        // gps factor
        addGPSFactor();

        // loop factor
        addLoopFactor();

        // cout << "****************************************************" << endl;
        // gtSAMgraph.print("GTSAM Graph:\n");

        // update iSAM
        isam->update(gtSAMgraph, initialEstimate);
        isam->update();

        if (aLoopIsClosed == true)
        {
            isam->update();
            isam->update();
            isam->update();
            isam->update();
            isam->update();
        }

        gtSAMgraph.resize(0);
        initialEstimate.clear();

        //save key poses
        PointType thisPose3D;
        PointTypePose thisPose6D;
        Pose3 latestEstimate;

        isamCurrentEstimate = isam->calculateEstimate();
        latestEstimate = isamCurrentEstimate.at<Pose3>(isamCurrentEstimate.size()-1);
        // cout << "****************************************************" << endl;
        // isamCurrentEstimate.print("Current estimate: ");

        thisPose3D.x = latestEstimate.translation().x();
        thisPose3D.y = latestEstimate.translation().y();
        thisPose3D.z = latestEstimate.translation().z();
        thisPose3D.intensity = cloudKeyPoses3D->size(); // this can be used as index
        cloudKeyPoses3D->push_back(thisPose3D);

        thisPose6D.x = thisPose3D.x;
        thisPose6D.y = thisPose3D.y;
        thisPose6D.z = thisPose3D.z;
        thisPose6D.intensity = thisPose3D.intensity ; // this can be used as index
        thisPose6D.roll  = latestEstimate.rotation().roll();
        thisPose6D.pitch = latestEstimate.rotation().pitch();
        thisPose6D.yaw   = latestEstimate.rotation().yaw();
        thisPose6D.time = timeLaserInfoCur;
        cloudKeyPoses6D->push_back(thisPose6D);

        // cout << "****************************************************" << endl;
        // cout << "Pose covariance:" << endl;
        // cout << isam->marginalCovariance(isamCurrentEstimate.size()-1) << endl << endl;
        poseCovariance = isam->marginalCovariance(isamCurrentEstimate.size()-1);

        // save updated transform
        transformTobeMapped[0] = latestEstimate.rotation().roll();
        transformTobeMapped[1] = latestEstimate.rotation().pitch();
        transformTobeMapped[2] = latestEstimate.rotation().yaw();
        transformTobeMapped[3] = latestEstimate.translation().x();
        transformTobeMapped[4] = latestEstimate.translation().y();
        transformTobeMapped[5] = latestEstimate.translation().z();

        // save all the received edge and surf points
        pcl::PointCloud<PointType>::Ptr thisCornerKeyFrame(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr thisSurfKeyFrame(new pcl::PointCloud<PointType>());
        pcl::copyPointCloud(*laserCloudCornerLastDS,  *thisCornerKeyFrame);
        pcl::copyPointCloud(*laserCloudSurfLastDS,    *thisSurfKeyFrame);

        // save key frame cloud
        cornerCloudKeyFrames.push_back(thisCornerKeyFrame);
        surfCloudKeyFrames.push_back(thisSurfKeyFrame);

        // save path for visualization
        updatePath(thisPose6D);
    }

    void correctPoses()
    {
        if (cloudKeyPoses3D->points.empty())
            return;

        if (aLoopIsClosed == true)
        {
            // clear map cache
            laserCloudMapContainer.clear();
            // clear path
            globalPath.poses.clear();
            // update key poses
            int numPoses = isamCurrentEstimate.size();
            for (int i = 0; i < numPoses; ++i)
            {
                cloudKeyPoses3D->points[i].x = isamCurrentEstimate.at<Pose3>(i).translation().x();
                cloudKeyPoses3D->points[i].y = isamCurrentEstimate.at<Pose3>(i).translation().y();
                cloudKeyPoses3D->points[i].z = isamCurrentEstimate.at<Pose3>(i).translation().z();

                cloudKeyPoses6D->points[i].x = cloudKeyPoses3D->points[i].x;
                cloudKeyPoses6D->points[i].y = cloudKeyPoses3D->points[i].y;
                cloudKeyPoses6D->points[i].z = cloudKeyPoses3D->points[i].z;
                cloudKeyPoses6D->points[i].roll  = isamCurrentEstimate.at<Pose3>(i).rotation().roll();
                cloudKeyPoses6D->points[i].pitch = isamCurrentEstimate.at<Pose3>(i).rotation().pitch();
                cloudKeyPoses6D->points[i].yaw   = isamCurrentEstimate.at<Pose3>(i).rotation().yaw();

                updatePath(cloudKeyPoses6D->points[i]);
            }

            aLoopIsClosed = false;
        }
    }

    void updatePath(const PointTypePose& pose_in)
    {
        geometry_msgs::msg::PoseStamped pose_stamped;
        pose_stamped.header.stamp = rclcpp::Time(pose_in.time * 1e9);
        pose_stamped.header.frame_id = odometryFrame;
        pose_stamped.pose.position.x = pose_in.x;
        pose_stamped.pose.position.y = pose_in.y;
        pose_stamped.pose.position.z = pose_in.z;
        tf2::Quaternion q;
        q.setRPY(pose_in.roll, pose_in.pitch, pose_in.yaw);
        pose_stamped.pose.orientation.x = q.x();
        pose_stamped.pose.orientation.y = q.y();
        pose_stamped.pose.orientation.z = q.z();
        pose_stamped.pose.orientation.w = q.w();

        globalPath.poses.push_back(pose_stamped);
    }

    void publishOdometry()
    {
        // Publish odometry for ROS (global)
        nav_msgs::msg::Odometry laserOdometryROS;
        laserOdometryROS.header.stamp = timeLaserInfoStamp;
        laserOdometryROS.header.frame_id = odometryFrame;
        laserOdometryROS.child_frame_id = "odom_mapping";
        laserOdometryROS.pose.pose.position.x = transformTobeMapped[3];
        laserOdometryROS.pose.pose.position.y = transformTobeMapped[4];
        laserOdometryROS.pose.pose.position.z = transformTobeMapped[5];
        tf2::Quaternion quat_tf;
        quat_tf.setRPY(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
        geometry_msgs::msg::Quaternion quat_msg;
        tf2::convert(quat_tf, quat_msg);
        laserOdometryROS.pose.pose.orientation = quat_msg;
        pubLaserOdometryGlobal->publish(laserOdometryROS);

        // Publish TF
        quat_tf.setRPY(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
        tf2::Transform t_odom_to_lidar = tf2::Transform(quat_tf, tf2::Vector3(transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5]));
        tf2::TimePoint time_point = tf2_ros::fromRclcpp(timeLaserInfoStamp);
        tf2::Stamped<tf2::Transform> temp_odom_to_lidar(t_odom_to_lidar, time_point, odometryFrame);
        geometry_msgs::msg::TransformStamped trans_odom_to_lidar;
        tf2::convert(temp_odom_to_lidar, trans_odom_to_lidar);
        trans_odom_to_lidar.child_frame_id = "lidar_link";
        br->sendTransform(trans_odom_to_lidar);

        // Publish odometry for ROS (incremental)
        static bool lastIncreOdomPubFlag = false;
        static nav_msgs::msg::Odometry laserOdomIncremental; // incremental odometry msg
        static Eigen::Affine3f increOdomAffine; // incremental odometry in affine
        if (lastIncreOdomPubFlag == false)
        {
            lastIncreOdomPubFlag = true;
            laserOdomIncremental = laserOdometryROS;
            increOdomAffine = trans2Affine3f(transformTobeMapped);
        } else {
            Eigen::Affine3f affineIncre = incrementalOdometryAffineFront.inverse() * incrementalOdometryAffineBack;
            increOdomAffine = increOdomAffine * affineIncre;
            float x, y, z, roll, pitch, yaw;
            pcl::getTranslationAndEulerAngles (increOdomAffine, x, y, z, roll, pitch, yaw);
            if (cloudInfo.imu_available == true)
            {
                if (std::abs(cloudInfo.imu_pitch_init) < 1.4)
                {
                    double imuWeight = 0.1;
                    tf2::Quaternion imuQuaternion;
                    tf2::Quaternion transformQuaternion;
                    double rollMid, pitchMid, yawMid;

                    // slerp roll
                    transformQuaternion.setRPY(roll, 0, 0);
                    imuQuaternion.setRPY(cloudInfo.imu_roll_init, 0, 0);
                    tf2::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                    roll = rollMid;

                    // slerp pitch
                    transformQuaternion.setRPY(0, pitch, 0);
                    imuQuaternion.setRPY(0, cloudInfo.imu_pitch_init, 0);
                    tf2::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                    pitch = pitchMid;
                }
            }
            laserOdomIncremental.header.stamp = timeLaserInfoStamp;
            laserOdomIncremental.header.frame_id = odometryFrame;
            laserOdomIncremental.child_frame_id = "odom_mapping";
            laserOdomIncremental.pose.pose.position.x = x;
            laserOdomIncremental.pose.pose.position.y = y;
            laserOdomIncremental.pose.pose.position.z = z;
            tf2::Quaternion quat_tf;
            quat_tf.setRPY(roll, pitch, yaw);
            geometry_msgs::msg::Quaternion quat_msg;
            tf2::convert(quat_tf, quat_msg);
            laserOdomIncremental.pose.pose.orientation = quat_msg;
            if (isDegenerate)
                laserOdomIncremental.pose.covariance[0] = 1;
            else
                laserOdomIncremental.pose.covariance[0] = 0;
        }
        pubLaserOdometryIncremental->publish(laserOdomIncremental);
    }

    void publishFrames()
    {
        if (cloudKeyPoses3D->points.empty())
            return;
        // publish key poses
        publishCloud(pubKeyPoses, cloudKeyPoses3D, timeLaserInfoStamp, odometryFrame);
        // Publish surrounding key frames
        publishCloud(pubRecentKeyFrames, laserCloudSurfFromMapDS, timeLaserInfoStamp, odometryFrame);
        // publish registered key frame
        if (pubRecentKeyFrame->get_subscription_count() != 0)
        {
            pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
            PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
            *cloudOut += *transformPointCloud(laserCloudCornerLastDS,  &thisPose6D);
            *cloudOut += *transformPointCloud(laserCloudSurfLastDS,    &thisPose6D);
            publishCloud(pubRecentKeyFrame, cloudOut, timeLaserInfoStamp, odometryFrame);
        }
        // publish registered high-res raw cloud
        if (pubCloudRegisteredRaw->get_subscription_count() != 0)
        {
            pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
            pcl::fromROSMsg(cloudInfo.cloud_deskewed, *cloudOut);
            PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
            *cloudOut = *transformPointCloud(cloudOut,  &thisPose6D);
            publishCloud(pubCloudRegisteredRaw, cloudOut, timeLaserInfoStamp, odometryFrame);
        }
        // publish path
        if (pubPath->get_subscription_count() != 0)
        {
            globalPath.header.stamp = timeLaserInfoStamp;
            globalPath.header.frame_id = odometryFrame;
            pubPath->publish(globalPath);
        }
    }
};


int main(int argc, char** argv)
{   
    rclcpp::init(argc, argv);

    rclcpp::NodeOptions options;
    options.use_intra_process_comms(true);
    rclcpp::executors::SingleThreadedExecutor exec;

    auto MO = std::make_shared<mapOptimization>(options);
    exec.add_node(MO);

    RCLCPP_INFO(rclcpp::get_logger("rclcpp"), "\033[1;32m----> Map Optimization Started.\033[0m");

    std::thread loopthread(&mapOptimization::loopClosureThread, MO);
    std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, MO);

    exec.spin();

    rclcpp::shutdown();

    loopthread.join();
    visualizeMapThread.join();

    // 确保保存地图线程完成
    if (MO->saveMapThread.joinable()) {
        MO->saveMapThread.join();
    }

    return 0;
}

这样就可以输入指令保存地图了

现在数据集就跑完了,后续还会更新实际的哈,可能要过一阵子就是

六.跑实际数据(等更新)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值