2025美赛C题奥运奖牌榜模型(附代码+全保姆教程)Models for Olympic Medal Tables

本文为个人解题笔记,仅供参考学习。本文C题的所有问题。

问题1 解题全流程

Develop a model for medal counts for each country (for Gold and total medals at a
minimum). Include estimates of the uncertainty/precision of your model predictions and
measures of how well model performs.
o Based on your model, what are your projections for the medal table in the Los
Angeles, USA summer Olympics in 2028? Include prediction intervals for all
results. Which countries do you believe are most likely to improve? Which will
do worse than in 2024?
o Your model should include countries that have yet to earn medals; what is your
projection for how many will earn their first medal in the next Olympics? W

### 关于2025国大学生数学建模C的解决方案 #### 一、背景介绍 针对“2025 MCM Problem C: Models for Olympic Medal Tables”,目标是从多个角度构建模型,利用历史数据以及现有运动员的表现来预测未来的奥运奖牌榜情况。 #### 二、Python代码示例 为了实现上述目的,在Python中可以采用如下方式处理: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score def load_data(file_path): """加载并预处理数据""" data = pd.read_csv(file_path) # 数据清洗与特征工程... X = data.drop(columns=['medal_count']) y = data['medal_count'] return X, y def build_and_train_model(X, y): """训练线性回归模型""" X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) score = r2_score(y_test, predictions) print(f'Mean Squared Error: {mse}') print(f'R² Score: {score}') return model if __name__ == "__main__": file_path = 'olympic_medals.csv' # 假设这是存储有各国历届奥运成绩的数据集文件路径 X, y = load_data(file_path) trained_model = build_and_train_model(X, y) ``` 此段代码展示了如何基于给定的历史数据集`olympic_medals.csv`创建一个简单的线性回归模型用于预测各个国家在未来奥运会中的潜在获奖数量[^1]。需要注意的是实际应用时还需要考虑更多因素如人口基数、经济水平等因素的影响,并且要对原始数据做更深入细致地清理工作以提高预测准确性[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步入烟尘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值