大型互联网公司分布式ID方案总结

本文深入探讨了九种分布式ID生成方案,包括UUID、数据库自增ID、号段模式、Redis、Snowflake算法、TinyID、Uidgenerator及Leaf,分析了各自的实现原理、优缺点及适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、为什么要用分布式ID?

在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?

1、什么是分布式ID?

拿MySQL数据库举个栗子:在我们业务数据量不大的时候,单库单表完全可以支撑现有业务,数据再大一点搞个MySQL主从同步读写分离也能对付。但随着数据日渐增长,主从同步也扛不住了,就需要对数据库进行分库分表,但分库分表后需要有一个唯一ID来标识一条数据,数据库的自增ID显然不能满足需求;特别一点的如订单、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。那么这个全局唯一ID就叫分布式ID。

2、那么分布式ID需要满足那些条件?

  • 全局唯一:必须保证ID是全局性唯一的,基本要求
  • 高性能:高可用低延时,ID生成响应要块,否则反倒会成为业务瓶颈
  • 高可用:100%的可用性是骗人的,但是也要无限接近于100%的可用性
  • 好接入:要秉着拿来即用的设计原则,在系统设计和实现上要尽可能的简单
  • 趋势递增:最好趋势递增,这个要求就得看具体业务场景了,一般不严格要求

二、 分布式ID都有哪些生成方式?

今天主要分析一下以下9种,分布式ID生成器方式以及优缺点:

UUID
数据库自增ID
数据库多主模式
号段模式
Redis
雪花算法(SnowFlake)
滴滴出品(TinyID)
百度 (Uidgenerator)
美团(Leaf)
那么它们都是如何实现?以及各自有什么优缺点?我们往下看在这里插入图片描述

1、基于UUID

在Java的世界里,想要得到一个具有唯一性的ID,首先被想到可能就是UUID,毕竟它有着全球唯一的特性。那么UUID可以做分布式ID吗?答案是可以的,但是并不推荐!

public static void main(String[] args) { 
       String uuid = UUID.randomUUID().toString().replaceAll("-","");
       System.out.println(uuid);
 }

UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但UUID却并不适用于实际的业务需求。像用作订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式ID。

优点

  • 生成足够简单,本地生成无网络消耗,具有唯一性

缺点

  • 无序的字符串,不具备趋势自增特性
  • 没有具体的业务含义
  • 长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽量越短越好,作为数据库主键 UUID 的无序性会导致数据位置频繁变动,严重影响性能。

2、基于数据库自增ID

基于数据库的auto_increment自增ID完全可以充当分布式ID,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:

CREATE DATABASE `SEQ_ID`;
CREATE TABLE SEQID.SEQUENCE_ID (
    id bigint(20) unsigned NOT NULL auto_increment, 
    value char(10) NOT NULL default '',
    PRIMARY KEY (id),
) ENGINE=MyISAM;
insert into SEQUENCE_ID(value)  VALUES ('values');

当我们需要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!

优点

  • 实现简单,ID单调自增,数值类型查询速度快

缺点

  • DB单点存在宕机风险,无法扛住高并发场景

3、基于数据库集群模式

前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。

那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?

解决方案:

  • 设置起始值和自增步长

MySQL_1 配置:

set @@auto_increment_offset = 1;     -- 起始值
set @@auto_increment_increment = 2;  -- 步长

MySQL_2 配置:

set @@auto_increment_offset = 2;     -- 起始值
set @@auto_increment_increment = 2;  -- 步长
这样两个MySQL实例的自增ID分别就是:
1、3、5、7、9 
2、4、6、8、10

那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。
在这里插入图片描述
从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。

优点

  • 解决DB单点问题

缺点

  • 不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。

4、基于数据库的号段模式

号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:

CREATE TABLE id_generator (
  id int(10) NOT NULL,
  max_id bigint(20) NOT NULL COMMENT '当前最大id',
  step int(20) NOT NULL COMMENT '号段的布长',
  biz_type    int(20) NOT NULL COMMENT '业务类型',
  version int(20) NOT NULL COMMENT '版本号',
  PRIMARY KEY (`id`)
) 
  • biz_type :代表不同业务类型
  • max_id :当前最大的可用id
  • step :代表号段的长度
  • version :是一个乐观锁,每次都更新version,保证并发时数据的正确性
idbiz_typemax_idstepversion
1101100020000

等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

update id_generator set max_id = #{max_id+step}, 
	version = version + 1 where version = # {version} and biz_type = XXX

由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。

5、基于Redis模式
Redis也同样可以实现,原理就是利用redis的incr命令实现ID的原子性自增

127.0.0.1:6379> set seq_id 1     // 初始化自增ID为1
OK
127.0.0.1:6379> incr seq_id      // 增加1,并返回递增后的数值
(integer) 2

用redis实现需要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDB和AOF

RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。
AOF会对每条写命令进行持久化,即使Redis挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致Redis重启恢复的数据时间过长。

6、基于雪花算法(Snowflake)模式
雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。在这里插入图片描述

Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

  • 第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。
  • 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
  • 工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。
  • 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID

根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。

Java版本的Snowflake算法实现:

/**
 * Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL
 *
 * https://github.com/beyondfengyu/SnowFlake
 */
public class SnowFlakeShortUrl {
 
    /**
     * 起始的时间戳
     */
    private final static long START_TIMESTAMP = 1480166465631L;
 
    /**
     * 每一部分占用的位数
     */
    private final static long SEQUENCE_BIT = 12;   //序列号占用的位数
    private final static long MACHINE_BIT = 5;     //机器标识占用的位数
    private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数
 
    /**
     * 每一部分的最大值
     */
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);
 
    /**
     * 每一部分向左的位移
     */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;
 
    private long dataCenterId;  //数据中心
    private long machineId;     //机器标识
    private long sequence = 0L; //序列号
    private long lastTimeStamp = -1L;  //上一次时间戳
 
    private long getNextMill() {
        long mill = getNewTimeStamp();
        while (mill <= lastTimeStamp) {
            mill = getNewTimeStamp();
        }
        return mill;
    }
 
    private long getNewTimeStamp() {
        return System.currentTimeMillis();
    }
 
    /**
     * 根据指定的数据中心ID和机器标志ID生成指定的序列号
     *
     * @param dataCenterId 数据中心ID
     * @param machineId    机器标志ID
     */
    public SnowFlakeShortUrl(long dataCenterId, long machineId) {
        if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
            throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");
        }
        this.dataCenterId = dataCenterId;
        this.machineId = machineId;
    }
 
    /**
     * 产生下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long currTimeStamp = getNewTimeStamp();
        if (currTimeStamp < lastTimeStamp) {
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        }
 
        if (currTimeStamp == lastTimeStamp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currTimeStamp = getNextMill();
            }
        } else {
            //不同毫秒内,序列号置为0
            sequence = 0L;
        }
 
        lastTimeStamp = currTimeStamp;
 
        return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
                | dataCenterId << DATA_CENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    }
 
    public static void main(String[] args) {
        SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);
 
        for (int i = 0; i < (1 << 4); i++) {
            //10进制
            System.out.println(snowFlake.nextId());
        }
    }
}

7、百度(uid-generator)
uid-generator是由百度技术部开发,项目GitHub地址 https://github.com/baidu/uid-generator。uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。对于uid-generator ID组成结构:workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。

参考文献
https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

8、美团(Leaf)
Leaf由美团开发,github地址:https://github.com/Meituan-Dianping/Leaf。

Leaf同时支持号段模式和snowflake算法模式,可以切换使用。号段模式,先导入源码 https://github.com/Meituan-Dianping/Leaf ,在建一张表leaf_alloc

DROP TABLE IF EXISTS `leaf_alloc`;
 
CREATE TABLE `leaf_alloc` (
  `biz_tag` varchar(128)  NOT NULL DEFAULT '' COMMENT '业务key',
  `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
  `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
  `description` varchar(256)  DEFAULT NULL COMMENT '业务key的描述',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
  PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;

然后在项目中开启号段模式,配置对应的数据库信息,并关闭snowflake模式

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8
leaf.jdbc.username=root
leaf.jdbc.password=root
 
leaf.snowflake.enable=false
#leaf.snowflake.zk.address=
#leaf.snowflake.port=

启动leaf-server 模块的 LeafServerApplication项目就跑起来了。号段模式获取分布式自增ID的测试url :http://localhost:8080/api/segment/get/leaf-segment-test。监控号段模式:http://localhost:8080/cache。snowflake模式。Leaf的snowflake模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
snowflake模式获取分布式自增ID的测试url:http://localhost:8080/api/snowflake/get/test

9、滴滴(Tinyid)

Tinyid由滴滴开发,Github地址:https://github.com/didi/tinyid。Tinyid是基于号段模式原理实现的与Leaf如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]
在这里插入图片描述
Tinyid提供http和tinyid-client两种方式接入

Http方式接入

(1)导入Tinyid源码:

git clone https://github.com/didi/tinyid.git

(2)创建数据表:

CREATE TABLE `tiny_id_info` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
  `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',
  `begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',
  `max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
  `step` int(11) DEFAULT '0' COMMENT '步长',
  `delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
  `remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',
  `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
  `version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',
  PRIMARY KEY (`id`),
  UNIQUE KEY `uniq_biz_type` (`biz_type`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';
 
CREATE TABLE `tiny_id_token` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',
  `token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',
  `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
  `remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',
  `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';
 
INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
    (1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);
 
INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
    (2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);
 
 
INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
    (1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');
 
INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
    (2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

(3)配置数据库:

datasource.tinyid.names=primary
datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver
datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
datasource.tinyid.primary.username=root
datasource.tinyid.primary.password=123456

(4)启动tinyid-server后测试

获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c'
返回结果: 3
批量获取分布式自增ID:
http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10'
返回结果:  4,5,6,7,8,9,10,11,12,13

Java客户端方式接入

重复Http方式的(2)(3)操作

引入依赖

<dependency>
    <groupId>com.xiaoju.uemc.tinyid</groupId>
    <artifactId>tinyid-client</artifactId>
    <version>${tinyid.version}</version>
</dependency>

配置文件

tinyid.server =localhost:9999
tinyid.token =0f673adf80504e2eaa552f5d791b644c

test 、tinyid.token是在数据库表中预先插入的数据,test 是具体业务类型,tinyid.token表示可访问的业务类型

// 获取单个分布式自增ID
Long id =  TinyId . nextId( " test " );
 
// 按需批量分布式自增ID
List< Long > ids =  TinyId . nextId( " test " , 10 );
<think>嗯,用户让我介绍分布式ID生成方案。我需要先理清楚分布式ID生成的基本概念和常见方法。首先,分布式系统中生成唯一ID的挑战是什么?传统的自增ID在单机数据库中可以保证唯一,但在分布式环境下,多节点同时生成ID时会有冲突的可能,所以需要一种分布式的解决方案。 接下来,常见的方案有哪些呢?我记得有UUID、数据库自增、Snowflake算法、Redis生成,还有像Leaf这样的开源项目。需要逐一分析它们的优缺点。比如UUID虽然简单,但过长且无序,可能影响数据库索引效率。数据库自增需要维护一个中央数据库,可能成为单点故障,性能也有瓶颈。Snowflake算法利用时间戳、机器ID和序列号,生成有序的ID,但机器ID的分配和管理需要额外处理。 然后,用户可能需要了解每个方案的具体实现细节。比如Snowflake的结构,时间戳占多少位,机器ID如何分配,序列号的作用是什么。还有可能遇到的问题,比如时钟回拨对Snowflake的影响,以及如何解决这个问题,比如使用NTP同步或者预留位处理。 另外,用户可能关心不同方案的优缺点比较,以及适用场景。比如高并发下哪种方案更合适,是否需要趋势递增的特性,对存储空间的要求等等。可能需要举例说明,比如订单ID、日志跟踪等不同场景下的选择。 还要注意用户可能对某些技术细节不太清楚,需要用通俗易懂的语言解释,避免使用过多专业术语。同时,结构要清晰,分点说明,方便用户理解。比如分方案介绍,每个方案的结构、流程、优缺点,最后总结对比。 最后,是否需要提到一些新的方案或者变种,比如改进版的Snowflake,或者结合数据库和缓存的方案,如Leaf-segment和Leaf-snowflake。可能还要提到第三方服务如美团的Leaf,百度的UidGenerator,避免重复造轮子。 需要检查是否符合用户给的系统级指令,比如数学公式是否正确用$包裹,独立公式用$$,中文回答,结构清晰。同时确保LaTeX语法正确,比如时间戳、机器ID和序列号的位数表示是否正确,使用等宽字体或者代码块显示可能更好,但用户要求用LaTeX的话,需要用数学公式格式。 总结思考步骤:先介绍分布式ID的需求和挑战,再分点讲解各方案的结构、流程、优缺点,最后对比总结,给出选型建议。确保每个部分都符合用户的格式要求,正确使用LaTeX,结构清晰。</think>以下是分布式ID生成方案的详细介绍,按常见方案分类说明: ### 一、需求背景 在分布式系统中,需要满足: 1. 全局唯一性 2. 趋势递增(利于数据库索引) 3. 高可用(QPS 10万+) 4. 可控制暴露信息(如避免连续数字暴露订单量) ### 二、常见方案对比 | 方案 | 优点 | 缺点 | |--------------------|-----------------------------|-----------------------------| | UUID | 简单、无中心化 | 无序、存储空间大(36字符) | | 数据库自增 | 绝对有序、易实现 | 存在单点故障风险、扩展性差 | | Snowflake | 高性能、可排序 | 依赖时钟、需管理机器ID | | Redis生成 | 高性能、可定制 | 依赖额外组件、维护成本高 | | Leaf-segment | 缓冲优化、高可用 | 需维护DB、存在号码段浪费 | ### 三、核心方案详解 #### 1. UUID $$ UUID示例:550e8400-e29b-41d4-a716-446655440000 $$ - 生成方式:标准RFC规范生成128位数字 - 缺点:无序性导致索引效率下降(B+树分裂) #### 2. 数据库自增 ```sql CREATE TABLE id_generator ( id int NOT NULL AUTO_INCREMENT, stub char(1) NOT NULL DEFAULT '', PRIMARY KEY (id), UNIQUE KEY stub (stub) ) ``` - 通过REPLACE INTO获取ID - 改进方案:多实例设置不同步长 $$ ID = n \times k + m $$ (n为实例数,k为步长,m为实例偏移量) #### 3. Snowflake算法 $$ ID = 时间戳 \times 2^{22} + 机器ID \times 2^{12} + 序列号 $$ - 位分配(64位): - 时间戳:41位(约69年) - 机器ID:10位(1024节点) - 序列号:12位(4096/ms) - 时钟回拨解决方案: - 物理时钟+逻辑时钟混合 - 故障时切换备用ID生成器 #### 4. Leaf方案(美团) **4.1 Leaf-segment** ```plantuml 客户端 -> Proxy: 获取ID段 Proxy -> DB: 更新max_id DB -> Proxy: 返回新号段 Proxy -> 客户端: 分配号段 ``` - 双Buffer优化:提前加载下一个号段 **4.2 Leaf-snowflake** - 改进点: - 使用ZK分配workerID - 时钟同步校验 - 异常时降级为号段模式 ### 四、选型建议 | 场景 | 推荐方案 | |----------------------|---------------------| | 中小型系统 | 改进版数据库自增 | | 高并发互联网业务 | Snowflake/Leaf | | 非结构化数据标识 | UUIDv4 | | 高可用性要求 | Redis集群+ Lua脚本 | ### 五、特殊场景处理 1. **环形缓冲区**:提前生成ID池应对突发流量 2. **业务标识嵌入**: $$ ID = 业务码 \times 10^n + 分布式ID $$ 3. **跨机房方案**:在机器ID中分配3位机房标识 ### 六、性能指标参考 - Snowflake单机吞吐量:约400万ID/秒 - Leaf-segment性能:1.2万QPS(号段长度1000) - Redis集群:可达10万+ QPS 建议根据实际业务规模选择方案大型系统推荐优先考虑Snowflake及其改进方案
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值