一分钟理解softmax函数

本文介绍了softmax函数,它是二分类函数sigmoid在多分类上的推广,目的是将多分类结果以概率形式展现。阐述了其将预测结果转换为概率的原理,即先通过指数函数将结果转化为非负数,再进行归一化处理使概率之和为1,还给出了具体示例。

做过多分类任务的同学一定都知道softmax函数。softmax函数,又称归一化指数函数。它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。下图展示了softmax的计算方法:

下面为大家解释一下为什么softmax是这种形式。

首先,我们知道概率有两个性质:1)预测的概率为非负数;2)各种预测结果概率之和等于1。

softmax就是将在负无穷到正无穷上的预测结果按照这两步转换为概率的。

1)将预测结果转化为非负数

下图为y=exp(x)的图像,我们可以知道指数函数的值域取值范围是零到正无穷。softmax第一步就是将模型的预测结果转化到指数函数上,这样保证了概率的非负性

2)各种预测结果概率之和等于1

为了确保各个预测结果的概率之和等于1。我们只需要将转换后的结果进行归一化处理。方法就是将转化后的结果除以所有转化后结果之和,可以理解为转化后结果占总数的百分比。这样就得到近似的概率。

下面为大家举一个例子,假如模型对一个三分类问题的预测结果为-3、1.5、2.7。我们要用softmax将模型结果转为概率。步骤如下:

1)将预测结果转化为非负数

y1 = exp(x1) = exp(-3) = 0.05

y2 = exp(x2) = exp(1.5) = 4.48

y3 = exp(x3) = exp(2.7) = 14.88

2)各种预测结果概率之和等于1

z1 = y1/(y1+y2+y3) = 0.05/(0.05+4.48+14.88) = 0.0026

z2 = y2/(y1+y2+y3) = 4.48/(0.05+4.48+14.88) = 0.2308

z3 = y3/(y1+y2+y3) = 14.88/(0.05+4.48+14.88) = 0.7666

总结一下softmax如何将多分类输出转换为概率,可以分为两步:

1)分子:通过指数函数,将实数输出映射到零到正无穷。

2)分母:将所有结果相加,进行归一化。

下图为斯坦福大学CS224n课程中最softmax的解释:


————————————————
版权声明:本文为优快云博主「-永不妥协-」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/lz_peter/article/details/84574716

逻辑回归的损失函数是交叉熵损失函数。交叉熵损失函数在逻辑回归中起到了关键作用。如果使用平方误差作为损失函数,由于逻辑回归是处理分类问题,损失函数一般不是凸约束的。因此,我们使用交叉熵损失函数来定义逻辑回归的损失。交叉熵损失函数的数学表达式为[-2]: L(w) = -(y * log(a) + (1-y) * log(1-a)) 其中,y是样本的实际标签(0或1),a是逻辑回归的预测值(概率值),log表示自然对数。我们的目标是找到一组使得交叉熵损失函数最小的参数w。为了最小化这个损失函数,可以使用梯度下降等优化算法来找到使得损失函数最小的参数w。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [逻辑回归、交叉熵函数Softmax函数理解](https://blog.youkuaiyun.com/qq_40950382/article/details/88716877)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [大白话5分钟带你走进人工智能-第十七节逻辑回归之交叉熵损失函数概念(2)](https://blog.youkuaiyun.com/LHWorldBlog/article/details/89678897)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值