铁死亡的热度自不必多言,
近期,中研院分生所陈升宏课题组在 Nature 发表了研究,发现铁死亡触发波可导致大规模细胞死亡……
01
背景知识:触发波与 FHN 模型
动感光波,biu biu biu?NO!是触发波!!!
多细胞生物有时需要在远距离上快速协调行为。咳咳,说人话……For Example! 经历战斗或逃跑反应的人类会在数秒内心率加快、瞳孔扩张、外周血管收缩。但这种情况是无法通过扩散、微管运输、流动等通信方式实现的。
So,触发波,一种反复出现的生物现象,在传播过程中不会减慢或失去振幅,可快速可靠地远距离传输信息。
触发波:举个栗子!
首先,最古老的生物触发波——动作电位。
动作电位起源于轴突小丘 (图 1a) 并以不减的速度和幅度沿轴突传播 (图 1b)。动作电位产生和传播的关键蛋白质是电压敏感的钠通道 (图 1c)。
其电路是一个相互关联的正反馈和负反馈回路系统。反馈回路在蛋白质构象变化和离子流的水平上运行,这两个过程都是非常快速的过程,这使得动作电位的峰值可以在不到 1 毫秒的时间内达到[1]。


图 1. 生物触发波的示例[1]。
(a–c)动作电位。(a) 动作电位在轴突小丘处产生,并沿轴突向远端传播。(b) 通过一系列细胞外电极测量沿轴突传播的动作电位记录。动作电位期间 Na+ 向内流动记录为细胞外电极记录的电位负偏转。(c) 产生动作电位的电路示意图。(d–f) 受精卵中的钙波。(d) 钙波在精子入口处产生并扩散到整个卵子中。(e) 通过钙绿加载后的比率成像测量乳状带虫 Cerebratulus lacteus 母细胞中钙浓度随时间的变化。(f) 产生钙波的电路示意图。(g-i)非洲爪蟾卵中的有丝分裂波。(g)受精和受精后钙波约 1 小时后,Cdk1 激活波从着丝粒附近扩散到细胞皮层。(h)非洲爪蟾卵提取物中的有丝分裂波。薄薄的聚四氟乙烯管中装满了循环的非洲爪蟾卵提取物以及精子染色质和核定位信号--绿色荧光蛋白标记。核膜破裂波从细胞质中最快的区域 (靠近这部分管的中间) 向外扩散。(i)产生细胞周期蛋白 B-Cdk1 激活波的电路示意图。
当然,除了沿神经元轴突传播的动作电位外,典型的例子还包括各种组织中的钙波以及非洲爪蟾卵中的有丝分裂波。
虽然这三种情况下所涉及的蛋白质是互不相关的,但其输出 (膜去极化、细胞内 Ca2+ 或细胞周期蛋白 B-Cdk1 活性) 都会通过触发波在空间和时间中传播。
动作电位:质膜去极化——电压敏感钠通道开放——钠沿着其浓度和电位梯度向内涌入——膜进一步去极化,这构成了一个正反馈回路(图 1C)。动作电位由两个过程终止:电压敏感性钾通道的延迟开放,允许 K+ 流出细胞并恢复细胞内的净负电荷,以及电压依赖性钠通道的自身失活(图 1C)。
钙波:与动作电位一样,钙波是由具有正反馈的电路产生的(图 1F)。在这种情况下,细胞内游离 Ca2+ 的增加激活磷脂酶 C (PLC),后者裂解磷脂酰肌醇 4,5 二磷酸 (PIP 2) 并生成第二信使肌醇三磷酸 (IP 3)。然后,IP 3 与充满钙的内质网 (ER) 上的 IP 3 受体 (IP 3 R) 结合,使 Ca2+ 流入细胞质并进一步激活 PLC(图 1F)。因此,细胞内钙离子的增加会引起细胞内钙离子的进一步增加。此外,细胞内钙离子通过调节内质网中的 IP 3 受体和阿诺定受体(Ryanodine receptor),更直接地刺激内质网钙离子的释放。因此,有两个相互关联的正反馈回路在相似的时间尺度上起作用。细胞内钙离子的增加受到内质网有限容量的限制,然后被膜结合钙泵逆转,构成负反馈回路(图 1F)。
有丝分裂波:产生有丝分裂波的电路如图所示图 1I。该过程以细胞周期蛋白 B-细胞周期蛋白依赖性激酶 1 (Cdk1) 复合物为中心,后者是有丝分裂的主要调节器。蛋白激酶 Cdk1 又受快速、相互关联的正反馈和双负反馈回路调控 (Cdk1 激活其激活剂 Cdc25C 并使其灭活剂 Wee1 失活),从而构成双稳态开关。然后,该开关由时间延迟的负反馈回路关闭;Cdk1 激活 APC/C Cdc20 复合物,这是一种泛素 E3 连接酶,可促进细胞周期蛋白 B 降解并使系统恢复到低 Cdk1 活性状态。
物理助攻:FHN 模型
FitzHugh-Nagumo (FHN) 模型,一组物理学家熟知的方程。FHN 方程最初是作为 Hodgkin-Huxley 动作电位模型的简化提出的,可看作是相互关联的正负反馈回路的简单通用模型,可以产生各种类型的动态响应,包括开关、脉冲和振荡。此外,通过在 FHN 模型中添加扩散,可以产生触发波,这些触发波可快速传播这些开关、脉冲和振荡到很远的距离。
此外,FHN 模型可以表现出三种类型的行为:双稳态 (Bistability)、兴奋性

最低0.47元/天 解锁文章
1230

被折叠的 条评论
为什么被折叠?



