Codeforces 508E Arthur and Brackets【贪心】

本文介绍了一个有趣的算法问题:如何根据给定的左括号与对应右括号的大致距离范围,重构一个有效的括号匹配序列。通过使用栈来模拟贪心策略,确保每个左括号能在合适的范围内找到匹配的右括号。

E. Arthur and Brackets
time limit per test
2 seconds
memory limit per test
128 megabytes
input
standard input
output
standard output

Notice that the memory limit is non-standard.

Recently Arthur and Sasha have studied correct bracket sequences. Arthur understood this topic perfectly and become so amazed about correct bracket sequences, so he even got himself a favorite correct bracket sequence of length 2n. Unlike Arthur, Sasha understood the topic very badly, and broke Arthur's favorite correct bracket sequence just to spite him.

All Arthur remembers about his favorite sequence is for each opening parenthesis ('(') the approximate distance to the corresponding closing one (')'). For the i-th opening bracket he remembers the segment [li, ri], containing the distance to the corresponding closing bracket.

Formally speaking, for the i-th opening bracket (in order from left to right) we know that the difference of its position and the position of the corresponding closing bracket belongs to the segment [li, ri].

Help Arthur restore his favorite correct bracket sequence!

Input

The first line contains integer n (1 ≤ n ≤ 600), the number of opening brackets in Arthur's favorite correct bracket sequence.

Next n lines contain numbers li and ri (1 ≤ li ≤ ri < 2n), representing the segment where lies the distance from the i-th opening bracket and the corresponding closing one.

The descriptions of the segments are given in the order in which the opening brackets occur in Arthur's favorite sequence if we list them from left to right.

Output

If it is possible to restore the correct bracket sequence by the given data, print any possible choice.

If Arthur got something wrong, and there are no sequences corresponding to the given information, print a single line "IMPOSSIBLE" (without the quotes).

Examples
input
4
1 1
1 1
1 1
1 1
output
()()()()
input
3
5 5
3 3
1 1
output
((()))
input
3
5 5
3 3
2 2
output
IMPOSSIBLE
input
3
2 3
1 4
1 4
output
(())()

题目大意:


需要构造出来一个长度为2*n的括号匹配串,使得从左到右,每个左括号的匹配右括号在区间【Li,Ri】之间。


思路:


用一个栈模拟一下贪心就行。

我们先使得后边的左括号匹配上,再匹配前边的就行了。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<stack>
using namespace std;
int l[1500000];
int r[1500000];
int pos[1500000];
char ans[1500000];
int main()
{
    stack<int>s;
    int n;
    while(~scanf("%d",&n))
    {
        int flag=0;
        int cnt=0;
        stack<int>s;
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&l[i],&r[i]);
            s.push(i);
            pos[i]=cnt;
            ans[cnt++]='(';
            while(!s.empty())
            {
                int u=s.top();
                if(pos[u]+l[u]>cnt)break;
                if(pos[u]+r[u]<cnt)
                {
                    flag=1;
                    break;
                }
                ans[cnt++]=')';
                s.pop();
            }
        }
        if(s.size()==0&&flag==0)printf("%s\n",ans);
        else printf("IMPOSSIBLE\n");
    }
}







虽然给定引用中未直接提及“Kuroni and Simple Strings”题目的详细信息,但通常这类题目可能与字符串处理、括号匹配等相关。一般而言,题目可能会给出一个由括号组成的字符串,要求找出能移除的最大数量的不相交的合法括号对,并输出移除这些括号对后的相关信息。 ### 解法分析 #### 栈解法 栈解法是处理括号匹配问题的经典方法。通过遍历字符串,将左括号压入栈中,遇到右括号时,若栈顶为左括号,则将栈顶元素弹出,表示这是一对匹配的括号。 ```python s = input() stack = [] pairs = [] for i, char in enumerate(s): if char == '(': stack.append(i) else: if stack: left_index = stack.pop() pairs.append((left_index + 1, i + 1)) if not pairs: print(0) else: print(1) print(len(pairs) * 2) result = [] for l, r in pairs: result.extend([l, r]) result.sort() print(" ".join(map(str, result))) ``` #### 双指针解法 双指针解法从字符串的两端向中间遍历,分别使用两个指针 `left` 和 `right`。`left` 指针从左向右寻找 `(`,`right` 指针从右向左寻找 `)`,当找到一对匹配的括号时,将它们标记为已移除,继续寻找下一对匹配的括号,直到无法再找到匹配的括号为止。 ```python s = input() n = len(s) left = 0 right = n - 1 pairs = [] while left < right: while left < right and s[left] != '(': left += 1 while left < right and s[right] != ')': right -= 1 if left < right: pairs.append((left + 1, right + 1)) left += 1 right -= 1 if not pairs: print(0) else: print(1) print(len(pairs) * 2) result = [] for l, r in pairs: result.extend([l, r]) result.sort() print(" ".join(map(str, result))) ``` ### 复杂度分析 - **栈解法**:时间复杂度为 $O(n)$,其中 $n$ 是字符串的长度。空间复杂度为 $O(n)$,主要用于栈的空间开销。 - **双指针解法**:时间复杂度为 $O(n)$,空间复杂度为 $O(n)$,主要用于存储匹配的括号对。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值