Codeforces 676D Theseus and labyrinth【模拟+Bfs】

D. Theseus and labyrinth
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Theseus has just arrived to Crete to fight Minotaur. He found a labyrinth that has a form of a rectangular field of size n × m and consists of blocks of size 1 × 1.

Each block of the labyrinth has a button that rotates all blocks 90 degrees clockwise. Each block rotates around its center and doesn't change its position in the labyrinth. Also, each block has some number of doors (possibly none). In one minute, Theseus can either push the button in order to rotate all the blocks 90 degrees clockwise or pass to the neighbouring block. Theseus can go from block A to some neighbouring block B only if block A has a door that leads to block B and block B has a door that leads to block A.

Theseus found an entrance to labyrinth and is now located in block (xT, yT) — the block in the row xT and column yT. Theseus know that the Minotaur is hiding in block (xM, yM) and wants to know the minimum number of minutes required to get there.

Theseus is a hero, not a programmer, so he asks you to help him.

Input

The first line of the input contains two integers n and m (1 ≤ n, m ≤ 1000) — the number of rows and the number of columns in labyrinth, respectively.

Each of the following n lines contains m characters, describing the blocks of the labyrinth. The possible characters are:

  • «+» means this block has 4 doors (one door to each neighbouring block);
  • «-» means this block has 2 doors — to the left and to the right neighbours;
  • «|» means this block has 2 doors — to the top and to the bottom neighbours;
  • «^» means this block has 1 door — to the top neighbour;
  • «>» means this block has 1 door — to the right neighbour;
  • «<» means this block has 1 door — to the left neighbour;
  • «v» means this block has 1 door — to the bottom neighbour;
  • «L» means this block has 3 doors — to all neighbours except left one;
  • «R» means this block has 3 doors — to all neighbours except right one;
  • «U» means this block has 3 doors — to all neighbours except top one;
  • «D» means this block has 3 doors — to all neighbours except bottom one;
  • «*» means this block is a wall and has no doors.

Left, right, top and bottom are defined from representing labyrinth as a table, where rows are numbered from 1 to n from top to bottom and columns are numbered from 1 to m from left to right.

Next line contains two integers — coordinates of the block (xT, yT) (1 ≤ xT ≤ n, 1 ≤ yT ≤ m), where Theseus is initially located.

Last line contains two integers — coordinates of the block (xM, yM) (1 ≤ xM ≤ n, 1 ≤ yM ≤ m), where Minotaur hides.

It's guaranteed that both the block where Theseus starts and the block where Minotaur is hiding have at least one door. Theseus and Minotaur may be initially located at the same block.

Output

If Theseus is not able to get to Minotaur, then print -1 in the only line of the output. Otherwise, print the minimum number of minutes required to get to the block where Minotaur is hiding.

Examples
Input
2 2
+*
*U
1 1
2 2
Output
-1
Input
2 3
<><
><>
1 1
2 1
Output
4
Note

Assume that Theseus starts at the block (xT, yT) at the moment 0.


题目大意:

主人公有一个起点,有一个终点,各个形状表示各种不同的门,从一个点能够走到另一个点的要求是两个点之间都有门。

每一单位时间可以选择将所有门旋转90度,或者是移动到相邻的一个格子上。


思路:


显然每个点有四种状态,那么设定vis【i】【j】【k】表示到达点(i,j)处,状态为k的最小步数。

那么过程模拟,维护最小值。

每种状态都要枚举到。

比较复杂,谨慎点即可。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<queue>
#include<iostream>
using namespace std;
struct node
{
    int x,y;
    int contz;
    int step;
    friend bool operator <(node a,node b)
    {
        return a.step>b.step;
    }
} now,nex;
int fx[4]= {-1,1,0,0};
int fy[4]= {0,0,-1,1};
char a[1515][1515];
int vis[1515][1515][5];
int n,m,u,l,d,r;
int u2,l2,d2,r2;
int judge(int x,int y)
{
    if(x>=0&&x<n&&y>=0&&y<m&&a[x][y]!='*')return 1;
    else return 0;
}
int aa[10];
int bb[10];
void initaa()
{
    if(a[now.x][now.y]=='+')aa[0]=1,aa[1]=1,aa[2]=1,aa[3]=1;
    if(a[now.x][now.y]=='-')aa[0]=0,aa[1]=1,aa[2]=0,aa[3]=1;
    if(a[now.x][now.y]=='|')aa[0]=1,aa[1]=0,aa[2]=1,aa[3]=0;
    if(a[now.x][now.y]=='^')aa[0]=1,aa[1]=0,aa[2]=0,aa[3]=0;
    if(a[now.x][now.y]=='>')aa[0]=0,aa[1]=1,aa[2]=0,aa[3]=0;
    if(a[now.x][now.y]=='v')aa[0]=0,aa[1]=0,aa[2]=1,aa[3]=0;
    if(a[now.x][now.y]=='<')aa[0]=0,aa[1]=0,aa[2]=0,aa[3]=1;
    if(a[now.x][now.y]=='L')aa[0]=1,aa[1]=1,aa[2]=1,aa[3]=0;
    if(a[now.x][now.y]=='R')aa[0]=1,aa[1]=0,aa[2]=1,aa[3]=1;
    if(a[now.x][now.y]=='U')aa[0]=0,aa[1]=1,aa[2]=1,aa[3]=1;
    if(a[now.x][now.y]=='D')aa[0]=1,aa[1]=1,aa[2]=0,aa[3]=1;
}
void initbb()
{
    if(a[nex.x][nex.y]=='+')bb[0]=1,bb[1]=1,bb[2]=1,bb[3]=1;
    if(a[nex.x][nex.y]=='-')bb[0]=0,bb[1]=1,bb[2]=0,bb[3]=1;
    if(a[nex.x][nex.y]=='|')bb[0]=1,bb[1]=0,bb[2]=1,bb[3]=0;
    if(a[nex.x][nex.y]=='^')bb[0]=1,bb[1]=0,bb[2]=0,bb[3]=0;
    if(a[nex.x][nex.y]=='>')bb[0]=0,bb[1]=1,bb[2]=0,bb[3]=0;
    if(a[nex.x][nex.y]=='v')bb[0]=0,bb[1]=0,bb[2]=1,bb[3]=0;
    if(a[nex.x][nex.y]=='<')bb[0]=0,bb[1]=0,bb[2]=0,bb[3]=1;
    if(a[nex.x][nex.y]=='L')bb[0]=1,bb[1]=1,bb[2]=1,bb[3]=0;
    if(a[nex.x][nex.y]=='R')bb[0]=1,bb[1]=0,bb[2]=1,bb[3]=1;
    if(a[nex.x][nex.y]=='U')bb[0]=0,bb[1]=1,bb[2]=1,bb[3]=1;
    if(a[nex.x][nex.y]=='D')bb[0]=1,bb[1]=1,bb[2]=0,bb[3]=1;
}
void Bfs(int sx,int sy,int ex,int ey)
{
    for(int i=0;i<=1444;i++)
    {
        for(int j=0;j<=1444;j++)
        {
            for(int k=0;k<=4;k++)
            {
                vis[i][j][k]=0x3f3f3f3f;
            }
        }
    }
    sx--,sy--,ex--,ey--;
    priority_queue<node >s;
    now.x=sx;
    now.y=sy;
    now.step=0;
    now.contz=0;
    s.push(now);
    vis[now.x][now.y][0]=0;
    while(!s.empty())
    {
        now=s.top();
        if(now.x==ex&&now.y==ey)
        {
            printf("%d\n",now.step);
            return ;
        }
        s.pop();
        for(int i=0;i<4;i++)
        {
            nex.x=now.x+fx[i];
            nex.y=now.y+fy[i];
            if(nex.x>=0&&nex.x<n&&nex.y>=0&&nex.y<m&&a[nex.x][nex.y]!='*')
            {
                initaa();initbb();
                int pre=now.contz%4;
                for(int i=0;i<pre;i++)
                {
                    int tmp=aa[3];
                    aa[3]=aa[2];aa[2]=aa[1];aa[1]=aa[0];aa[0]=tmp;
                    tmp=bb[3];
                    bb[3]=bb[2];bb[2]=bb[1];bb[1]=bb[0];bb[0]=tmp;
                }
                for(int j=0;j<4;j++)
                {
                    if(i==0)//u
                    {
                        if(aa[0]==1&&bb[2]==1)
                        {
                            nex.step=j+1+now.step;
                            nex.contz=now.contz+j;
                            if(vis[nex.x][nex.y][nex.contz%4]>nex.step)
                            {
                                vis[nex.x][nex.y][nex.contz%4]=nex.step;
                                s.push(nex);
                            }
                        }
                    }
                    if(i==1)//d
                    {
                        if(aa[2]==1&&bb[0]==1)
                        {
                            nex.step=j+1+now.step;
                            nex.contz=now.contz+j;
                            if(vis[nex.x][nex.y][nex.contz%4]>nex.step)
                            {
                                vis[nex.x][nex.y][nex.contz%4]=nex.step;
                                s.push(nex);
                            }
                        }
                    }
                    if(i==2)//l
                    {
                        if(aa[3]==1&&bb[1]==1)
                        {
                            nex.step=j+1+now.step;
                            nex.contz=now.contz+j;
                            if(vis[nex.x][nex.y][nex.contz%4]>nex.step)
                            {
                                vis[nex.x][nex.y][nex.contz%4]=nex.step;
                                s.push(nex);
                            }
                        }
                    }
                    if(i==3)//r
                    {
                        if(aa[1]==1&&bb[3]==1)
                        {
                            nex.step=j+1+now.step;
                            nex.contz=now.contz+j;
                            if(vis[nex.x][nex.y][nex.contz%4]>nex.step)
                            {
                                vis[nex.x][nex.y][nex.contz%4]=nex.step;
                                s.push(nex);
                            }
                        }
                    }
                    int tmp=aa[3];
                    aa[3]=aa[2];aa[2]=aa[1];aa[1]=aa[0];aa[0]=tmp;
                    tmp=bb[3];
                    bb[3]=bb[2];bb[2]=bb[1];bb[1]=bb[0];bb[0]=tmp;
                }
            }
        }
    }
    /*
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<m;j++)
        {
            for(int k=0;k<=4;k++)
            {
                printf("%d ",vis[i][j][k]);
            }
        }
    }
    printf("\n");
    */
    printf("-1\n");
    return ;
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        int x1,y1,x2,y2;
        memset(vis,0,sizeof(vis));
        for(int i=0; i<n; i++)scanf("%s",a[i]);
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        Bfs(x1,y1,x2,y2);
    }
}








资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在 JavaScript 中实现点击展开与隐藏效果是一种非常实用的交互设计,它能够有效提升用户界面的动态性和用户体验。本文将详细阐述如何通过 JavaScript 实现这种功能,并提供一个完整的代码示例。为了实现这一功能,我们需要掌握基础的 HTML 和 CSS 知识,以便构建基本的页面结构和样式。 在这个示例中,我们有一个按钮和一个提示框(prompt)。默认情况下,提示框是隐藏的。当用户点击按钮时,提示框会显示出来;再次点击按钮时,提示框则会隐藏。以下是 HTML 部分的代码: 接下来是 CSS 部分。我们通过设置提示框的 display 属性为 none 来实现默认隐藏的效果: 最后,我们使用 JavaScript 来处理点击事件。我们利用事件监听机制,监听按钮的点击事件,并通过动态改变提示框的 display 属性来实现展开和隐藏的效果。以下是 JavaScript 部分的代码: 为了进一步增强用户体验,我们还添加了一个关闭按钮(closePrompt),用户可以通过点击该按钮来关闭提示框。以下是关闭按钮的 JavaScript 实现: 通过以上代码,我们就完成了点击展开隐藏效果的实现。这个简单的交互可以通过添加 CSS 动画效果(如渐显渐隐等)来进一步提升用户体验。此外,这个基本原理还可以扩展到其他类似的交互场景,例如折叠面板、下拉菜单等。 总结来说,JavaScript 实现点击展开隐藏效果主要涉及 HTML 元素的布局、CSS 的样式控制以及 JavaScript 的事件处理。通过监听点击事件并动态改变元素的样式,可以实现丰富的交互功能。在实际开发中,可以结合现代前端框架(如 React 或 Vue 等),将这些交互封装成组件,从而提高代码的复用性和维护性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值