A big company decided to launch a new series of rectangular displays, and decided that the display must have exactly n pixels.
Your task is to determine the size of the rectangular display — the number of lines (rows) of pixels a and the number of columns of pixels b, so that:
- there are exactly n pixels on the display;
- the number of rows does not exceed the number of columns, it means a ≤ b;
- the difference b - a is as small as possible.
The first line contains the positive integer n (1 ≤ n ≤ 106) — the number of pixels display should have.
Print two integers — the number of rows and columns on the display.
8
2 4
64
8 8
5
1 5
999999
999 1001
In the first example the minimum possible difference equals 2, so on the display should be 2 rows of 4 pixels.
In the second example the minimum possible difference equals 0, so on the display should be 8 rows of 8 pixels.
In the third example the minimum possible difference equals 4, so on the display should be 1 row of 5 pixels.
题目大意:
给你一个数n,让你找到两个数i,j,使其乘积为n。
要求输出的是abs(i-j)最小的那个。
思路:
我们一层for枚举i,那么如果i是n的因子,那么对应枚举出j=n/i,然后我们维护最小的abs(i-j)的答案即可。
时间复杂度O(n);
Ac代码:
#include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
int main()
{
int n;
while(~scanf("%d",&n))
{
int ans1,ans2;
int minn=0x3f3f3f3f;
for(int i=1;i<=n;i++)
{
if(n%i==0)
{
int j=n/i;
if(j>=i)
{
if(j-i<minn)
{
minn=j-i;
ans1=i,ans2=j;
}
}
}
}
printf("%d %d\n",ans1,ans2);
}
}