51nod 1524 可除图的最大团【dp】

探讨如何通过动态规划解决最大可除图团问题,给出两种AC代码实现方案,并详细解析了算法思路。

对于一般的图,最大团问题是一个NP-难的问题。然而,对于一些特殊的图,最大团问题可以有比较有效的解决方案。

关于最大团问题的概念,请百度之。^_^

在一个正整数集合A上定义可除图。 A = {a1, a2, ..., an} ,图上的顶点就是集合A中的数字。两个数字 ai  和  aj (i  j) 之间有一条边的条件是 ai 能够被  aj  整除,或者 aj  能够被  ai  整除.

现在给定一个正整数集A,请找出这个集合所确定的可除图的最大团。

样例解释:在这个例子中,最大团是3,可以选择 {3,6,18}。


Input
单组测试数据。
第一行有一个整数n (1≤n≤10^6),表示A的大小。
第二行有n个不一样的整数 a1,a2,...,an (1≤ai≤10^6),表示A中的元素。
Output
输出一个整数,表示最大团中的点数。
Input示例
样例输入1
8
3 4 6 8 10 18 21 24
Output示例
样例输出1
3

思路:


1、观察到ai的数据范围不大,那么考虑dp数值,设定dp【i】表示以数字i作为最大团中的最大数值的最大团大小。


2、那么对应有:dp【i】=max(dp【i的因子】+1,dp【i】);

直接搞会TLE,那么考虑对每一个数值的倍数进行dp.(利用数字倍数来搞的Dp也是一种很常见的套路)


3、注意题目中没有保证输入一定是递增的,所以我们首先要对数组进行排序。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int dp[1000500];
int a[1000500];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++)
        {
            int x;
            scanf("%d",&a[i]);
        }
        sort(a,a+n);
        for(int i=0;i<n;i++)
        {
            int x=a[i];
            dp[x]++;
            for(int j=2*x;j<=1000000;j+=x)
            {
                dp[j]=max(dp[j],dp[x]);
            }
        }
        int output=0;
        for(int i=1;i<=1000000;i++)
        {
            output=max(output,dp[i]);
        }
        printf("%d\n",output);
    }
}


最后再上一发我奇葩水果的代码:


#include<stdio.h>
#include<string.h>
#include<iostream>
#include<math.h>
using namespace std;
int a[1000500];
int dp[1000500];
int vis[1000500];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        memset(vis,0,sizeof(vis));
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            vis[a[i]]++;
        }
        int output=0;
        for(int i=1;i<=1000000;i++)
        {
            if(vis[i]==0)continue;
            dp[i]=1;
            int tmp=sqrt(i);
            for(int j=1;j<=min(50,(int)sqrt(i));j++)
            {
                if(i%j==0)
                {
                    if(j!=i)
                    dp[i]=max(dp[i],dp[j]+1);
                    if(i/j!=i)
                    dp[i]=max(dp[i],dp[i/j]+1);
                }
            }
            output=max(output,dp[i]);
        }
        printf("%d\n",output);
    }
}





基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于通过数值方法提升NMPC在动态系统中的鲁棒性与稳定性。文中结合实时迭代机制,构建了能够应对系统不确定性与外部扰动的双模预测控制框架,并利用Matlab进行仿真验证,展示了该模型在复杂非线性系统控制中的有效性与实用性。同时,文档列举了大量相关的科研方向与技术应用案例,涵盖优化调度、路径规划、电力系统管理、信号处理等多个领域,体现了该方法的广泛适用性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于解决非线性动态系统的实时控制问题,如机器人控制、无人机路径跟踪、微电网能量管理等;②帮助科研人员复现论文算法,开展NMPC相关创新研究;③为复杂系统提供高精度、强鲁棒性的预测控制解决方案。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注NMPC的实时迭代机制与双模稳定设计原理,并参考文档中列出的相关案例拓展应用场景,同时可借助网盘资源获取完整代码与数据支持。
UWB-IMU、UWB定位对比研究(Matlab代码实现)内容概要:本文介绍了名为《UWB-IMU、UWB定位对比研究(Matlab代码实现)》的技术文档,重点围绕超宽带(UWB)与惯性测量单元(IMU)融合定位技术展开,通过Matlab代码实现对两种定位方式的性能进行对比分析。文中详细阐述了UWB单独定位与UWB-IMU融合定位的原理、算法设计及仿真实现过程,利用多传感器数据融合策略提升定位精度与稳定性,尤其在复杂环境中减少信号遮挡和漂移误差的影响。研究内容包括系统建模、数据预处理、滤波算法(如扩展卡尔曼滤波EKF)的应用以及定位结果的可视化与误差分析。; 适合人群:具备一定信号处理、导航定位或传感器融合基础知识的研究生、科研人员及从事物联网、无人驾驶、机器人等领域的工程技术人员。; 使用场景及目标:①用于高精度室内定位系统的设计与优化,如智能仓储、无人机导航、工业巡检等;②帮助理解多源传感器融合的基本原理与实现方法,掌握UWB与IMU互补优势的技术路径;③为相关科研项目或毕业设计提供可复现的Matlab代码参考与实验验证平台。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注数据融合策略与滤波算法部分,同时可通过修改参数或引入实际采集数据进行扩展实验,以加深对定位系统性能影响因素的理解。
本系统基于MATLAB平台开发,适用于2014a、2019b及2024b等多个软件版本,并提供了可直接执行的示例数据集。代码采用模块化设计,关键参数均可灵活调整,程序结构逻辑分明且附有详细说明注释。主要面向计算机科学、电子信息工程、数学等相关专业的高校学生,适用于课程实验、综合作业及学位论文等教学与科研场景。 水声通信是一种借助水下声波实现信息传输的技术。近年来,多输入多输出(MIMO)结构与正交频分复用(OFDM)机制被逐步整合到水声通信体系中,显著增强了水下信息传输的容量与稳健性。MIMO配置通过多天线收发实现空间维度上的信号复用,从而提升频谱使用效率;OFDM方案则能够有效克服水下信道中的频率选择性衰减问题,保障信号在复杂传播环境中的可靠送达。 本系统以MATLAB为仿真环境,该工具在工程计算、信号分析与通信模拟等领域具备广泛的应用基础。用户可根据自身安装的MATLAB版本选择相应程序文件。随附的案例数据便于快速验证系统功能与性能表现。代码设计注重可读性与可修改性,采用参数驱动方式,重要变量均设有明确注释,便于理解与后续调整。因此,该系统特别适合高等院校相关专业学生用于课程实践、专题研究或毕业设计等学术训练环节。 借助该仿真平台,学习者可深入探究水声通信的基础理论及其关键技术,具体掌握MIMO与OFDM技术在水声环境中的协同工作机制。同时,系统具备良好的交互界面与可扩展架构,用户可在现有框架基础上进行功能拓展或算法改进,以适应更复杂的科研课题或工程应用需求。整体而言,该系统为一套功能完整、操作友好、适应面广的水声通信教学与科研辅助工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值