Codeforces 256A Almost Arithmetical Progression【dp】

本文介绍了一种算法,用于解决寻找给定序列中最长的几乎等差子序列的问题。这种子序列由一个整数p开始,后续项遵循加减q的规律。通过动态规划方法,文章详细阐述了如何在O(n^2)的时间复杂度内找到该子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Almost Arithmetical Progression
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is analmost arithmetical progression, if its elements can be represented as:

  • a1 = p, wherep is some integer;
  • ai = ai - 1 + ( - 1)i + 1·q(i > 1), where q is some integer.

Right now Gena has a piece of paper with sequence b, consisting ofn integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.

Sequence s1,  s2,  ...,  sk is a subsequence of sequenceb1,  b2,  ...,  bn, if there is such increasing sequence of indexesi1, i2, ..., ik(1  ≤  i1  <  i2  < ...   <  ik  ≤  n), thatbij  =  sj. In other words, sequences can be obtained from b by crossing out some elements.

Input

The first line contains integer n (1 ≤ n ≤ 4000). The next line contains n integersb1, b2, ..., bn(1 ≤ bi ≤ 106).

Output

Print a single integer — the length of the required longest subsequence.

Examples
Input
2
3 5
Output
2
Input
4
10 20 10 30
Output
3
Note

In the first test the sequence actually is the suitable subsequence.

In the second test the following subsequence fits: 10, 20, 10.


题目大意:

给你一个长度为N的序列,然你从中找出一个最长子序列a1,a2,.......an,使得a1=p,a2=a1-q,a3=a2+q...............


思路:


1、其实就是找一个最长子序列,使得其为:p,q,p,q......................


2、设定dp【i】【j】表示第i个数前边的数为j,那么不难想到其状态转移方程:

dp【i】【j】=dp【j】【pre】,这里pre表示上一个a【i】的位子。

时间复杂度O(n^2)

Ac代码:

#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
int a[5000];
int dp[5005][5005];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        int ans=0;
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            int pre=0;
            for(int j=0;j<i;j++)
            {
                dp[i][j]=dp[j][pre]+1;
                if(a[j]==a[i])pre=j;
                ans=max(ans,dp[i][j]);
            }
        }
        printf("%d\n",ans);
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值