Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is analmost arithmetical progression, if its elements can be represented as:
- a1 = p, wherep is some integer;
- ai = ai - 1 + ( - 1)i + 1·q(i > 1), where q is some integer.
Right now Gena has a piece of paper with sequence b, consisting ofn integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.
Sequence s1, s2, ..., sk is a subsequence of sequenceb1, b2, ..., bn, if there is such increasing sequence of indexesi1, i2, ..., ik(1 ≤ i1 < i2 < ... < ik ≤ n), thatbij = sj. In other words, sequences can be obtained from b by crossing out some elements.
The first line contains integer n (1 ≤ n ≤ 4000). The next line contains n integersb1, b2, ..., bn(1 ≤ bi ≤ 106).
Print a single integer — the length of the required longest subsequence.
2 3 5
2
4 10 20 10 30
3
In the first test the sequence actually is the suitable subsequence.
In the second test the following subsequence fits: 10, 20, 10.
题目大意:
给你一个长度为N的序列,然你从中找出一个最长子序列a1,a2,.......an,使得a1=p,a2=a1-q,a3=a2+q...............
思路:
1、其实就是找一个最长子序列,使得其为:p,q,p,q......................
2、设定dp【i】【j】表示第i个数前边的数为j,那么不难想到其状态转移方程:
dp【i】【j】=dp【j】【pre】,这里pre表示上一个a【i】的位子。
时间复杂度O(n^2)
Ac代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
int a[5000];
int dp[5005][5005];
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
int ans=0;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
int pre=0;
for(int j=0;j<i;j++)
{
dp[i][j]=dp[j][pre]+1;
if(a[j]==a[i])pre=j;
ans=max(ans,dp[i][j]);
}
}
printf("%d\n",ans);
}
}