Poj 2955 Brackets【区间dp】

本文介绍了一种使用动态规划算法解决寻找字符串中最长有效括号匹配的问题,通过实例详细解析了算法实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 6105 Accepted: 3269

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1,i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6

6

4

0

6

Source


题目大意:求给出的字符串的最长匹配。


思路:


1、设定dp【i】【j】表示从i到j这个区间内字符串的最长匹配。


2、那么不难理解:dp【i】【j】=dp【i+1】【j-1】+2(if(j>i&&i位子上的字符和j位子上的字符能够匹配上。))


3、如果有这样的字符串:()(),其中明显有dp【1】【2】=2,dp【3】【4】=2;dp【1】【4】=2,因为两个匹配是可以合并的,如:dp【1】【4】=dp【1】【2】+dp【3】【4】=4所以还有:

dp【i】【j】=max(dp【i】【j】,dp【i】【k】+dp【k+1】【j】);


Ac代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
int dp[150][150];
int main()
{
    char a[150];
    while(~scanf("%s",a))
    {
        memset(dp,0,sizeof(dp));
        if(strcmp(a,"end")==0)
        {
            break;
        }
        int n=strlen(a);
        for(int d=1;d<n;d++)
        {
            for(int i=0;i+d<n;i++)
            {
                int j=i+d;
                if(a[j]==')'&&a[i]=='('||a[j]==']'&&a[i]=='[')
                {
                    dp[i][j]=dp[i+1][j-1]+2;
                }
                for(int k=0;k<n;k++)
                {
                    dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
                }
            }
        }
        printf("%d\n",dp[0][n-1]);
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值