Common Subsequence
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 47612 | Accepted: 19568 |
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x
ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
Source
题目大意:
给你两个字符串,求最长公共子序列的长度.
思路:
1、设定dp【i】【j】表示第一个字符串以第i位结尾,第二个字符串以第j位结尾的最长公共子序列长度。
2、辣么状态转移方程:
①if(a【i】==b【j】)dp【i】【j】=dp【i-1】【j-1】+1;
②else dp【i】【j】=max(dp【i-1】【j】,dp【i】【j-1】);
Ac代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
char a[100000];
char b[100000];
int dp[1005][1005];
int main()
{
while(~scanf("%s%s",a,b))
{
int n1,n2;
n1=strlen(a);
n2=strlen(b);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n1;i++)
{
for(int j=1;j<=n2;j++)
{
if(a[i-1]==b[j-1])
{
dp[i][j]=dp[i-1][j-1]+1;
}
else
{
dp[i][j]=max(dp[i][j-1],dp[i][j]);
dp[i][j]=max(dp[i-1][j],dp[i][j]);
}
}
}
printf("%d\n",dp[n1][n2]);
}
}